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Dense Correspondences across Scenes and
Scales

Moria Tau and Tal Hassner

Abstract—We seek a practical method for establishing dense correspondences between two images with similar content, but possibly
different 3D scenes. One of the challenges in designing such a system is the local scale differences of objects appearing in the
two images. Previous methods often considered only few image pixels; matching only pixels for which stable scales may be reliably
estimated. Recently, others have considered dense correspondences, but with substantial costs associated with generating, storing and
matching scale invariant descriptors. Our work is motivated by the observation that pixels in the image have contexts — the pixels around
them — which may be exploited in order to reliably estimate local scales. We make the following contributions. (i) We show that scales
estimated in sparse interest points may be propagated to neighboring pixels where this information cannot be reliably determined.
Doing so allows scale invariant descriptors to be extracted anywhere in the image. (ii) We explore three means for propagating this
information: using the scales at detected interest points, using the underlying image information to guide scale propagation in each
image separately, and using both images together. Finally, (iii), we provide extensive qualitative and quantitative results, demonstrating
that scale propagation allows for accurate dense correspondences to be obtained even between very different images, with little
computational costs beyond those required by existing methods.

Index Terms—I|.4.10 Image Representation, |.4.7.a Feature representation
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Establishing correspondences between pixels in two
images is a fundamental step in many computer vi-
sion applications. Typically, this is performed by either
matching a sparse set of pixels, selected by a repeatable
detection method (e.g., the Harris-Laplace [1]), or by
matching all pixels in both images. Here we focus on
the latter case, seeking a practical means for establishing
dense correspondences across images of different scenes
in different local scales.

Corresponding pixels are expected to reflect the same
visual information. This information, however, may ap-
pear at different visual scales in different regions of
each image: A car may be close to the camera in one
photo, and far away in another; appearing large in the
first and small in the second. All the while, buildings
in the background remain at the same distance from
the camera, appearing the same in both images. Sparse
correspondence estimation methods seek stable scales,
which can be repeatably detected in different images of
the same scene, and which would allow extracting the
same visual information regardless of the scales of the
objects in the images. This approach, however, is only
known to work well for very few pixels — those where
stable scales can be reliably detected [2], [3].

Take, for example, the images in Fig. 1 (Top). These
present the same semantic content (a “smiley”), ap-
pearing in very different scenes and in different scales.

Input photo pair

1)<

Target warped onto source

DSIFT

Fig. 1: Dense correspondences between the same se-
mantic content (“smiley”) in different scenes and
scales. Top: Input images. Bottom: Image hallucination
results produced by warping the colors of the target onto
the source using the estimated flow from source to target.
A good result has the colors of the target located in
the same position as their matching semantic regions in
the source. Results show the output of SIFT flow using
DSIFT, without local scale selections (bottom left), and
our method with scale selection (bottom right).

Densely matching the pixels in these two images is a
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problem made especially challenging due to the wide
expanses of homogeneous regions, where stable scales
are difficult to determine. In order to estimate correspon-
dences, existing methods therefore make assumptions on
the nature of the scenes, the photos, and the desired
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correspondences themselves.

Stereoscopic systems, for example, generally assume
that the images being matched are of the same 3D scene,
present objects in mostly the same scales, and were
obtained under similar viewing conditions [4]. Recently,
the same-scene assumption has been relaxed by the SIFT
flow method of [5], [6]. Although an important step, SIFT
flow relies on the Dense-SIFT (DSIFT) descriptor of [7],
and therefore implicitly assumes that visual information
in both images appears at the same (arbitrarily selected)
scale. More importantly, this scale assumption is the
same for all pixels in both images; in essence, assuming
a single global scale for the two images and so greatly
limiting its applicability.

In the past few years, a number of methods have pro-
posed to eliminate this same-scale assumption, thereby
allowing for dense correspondences to be obtained un-
der very general settings. These, however, are either
designed to match images from the same scenes [8], or
require significant computation and storage in order to
deal with unknown variations in scale [9], [10].

In this paper we show that dense correspondences
can be established reliably, even in challenging settings,
such as those exemplified in Fig. 1, with little more
computational and storage requirements than needed for
the original SIFT flow algorithm.

Our work follows the observation that previous at-
tempts to produce robust, dense descriptors did so by
treating each pixel independently, without considering
the scales of other pixels in the image. We, instead,
turn to those few pixels where scales have been reliably
estimated and use them in order to estimate scales for all
other pixels. Realizing this idea, however, requires that
we answer an important question: How should scales
be propagated, from the few pixels where they were
reliably determined to all others, in a way which would
ensure repeatable scale assignments and consequent ac-
curate dense correspondence estimation, regardless of
local scale changes?

We answer this question by examining three methods
of propagating scale information across images, from
detected key-points where scale is available to pixels
where scales are not. Each of these methods considers
progressively more information in order to more reliably
propagate scales:

1) Geometric. We propagated scale information from
detected interest points by considering only the
spatial locations where scales were detected
(Sec. 3.1).

2) Image-aware. Scales are propagated as above, but
using image intensities in order to guide scale
propagation. This is described in Sec. 3.2.

3) Match-aware. Finally, in Sec. 3.3 we consider the
two images between which correspondences are es-
timated, propagating only scales at pixels selected
as (sparse) key-points in both images.

We demonstrate the utility of scale propagation on a
wide variety of qualitative and quantitative experiments,

comparing it to the state-of-the-art on well-used bench-
marks. Our results show that scale propagation provides
a means for better correspondences. More importantly,
they demonstrate our proposed approach to not only
outperform existing methods, but to do so as efficiently
as the original SIFT flow.

2 PREVIOUS WORK

Why dense-flow? Matching all the pixels of two im-
ages is a basic step in stereoscopic vision and motion
estimation and as such has been the subject of immense
research from the early years of computer vision. Survey-
ing the work on motion and stereo correspondences is
outside the scope of this paper, and we refer the reader
to popular computer vision textbooks for descriptions
of previous related work. A comprehensive treatment of
this subject is provided in particular in [11].

In recent years, a new thread of work seeks to look
beyond the single scene settings of stereo and motion
estimation systems, attempting to provide dense corre-
spondences between images even if they only share the
same semantic content. The motivation rose from the
realization that by densely linking the pixels of two im-
ages, local, per-pixel information can be transferred from
one image to the other. This information can then be
used for a wide range of computer vision applications,
including single-view depth estimation [12], [13], seman-
tic labels and segmentation [14], [15], image labeling and
similarity [16], [17], new-view synthesis [18] and even
handwritten text processing [19], [20].

In all cases described above, however, the same scale
was assumed for the images involved. This, either by
enforcing global alignment of the images (e.g., [18])
or by assuming that a large enough collection of
images exists such that at least one will portray the
same information in the same scales [15]. The method
presented here makes neither of these assumptions.

Scale-selection. Objects appear in different scales in
different images. Determining the correct scale at which
an image portion must be processed has therefore been
a long standing challenge in computer vision. Here we
only briefly survey the vast literature on this subject, and
we refer to [21], [22] for more detailed discussions.

In his pioneering work, Lindeberg [23], [24] was one
of the first to suggest seeking image pixels which have
well-defined, characteristic scales. He proposed using
the Laplacian of Gaussian (LoG) function computed over
image scales, which is covariant with the scale changes
of the visual information in the image, and so allows
extracting scale invariant descriptors.

In a subsequent work, Lowe [2] proposed replacing
the computationally expensive LoG function, with its
Difference of Gaussians (DoG) approximation, in what
has since become one of the standard de facto techniques
for scale selection. Specifically, an image is processed
by producing a 3D structure of z,y and scale, using
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three sets of sub-octave, DoG filters. This structure is
scanned in search of pixels with higher or lower values
than their 26 space-scale neighbors (3x3 neighborhood
in the current scale and its two adjacent scales). The scale
which provides these local extrema is selected as the
characteristic scale for the pixel.

These and other feature detectors select pixels as
keypoints if such a characteristic scale can be selected.
Some perform scale selection along with filtering of
low-contrast pixels to obtain more reliable detections.
One popular example is the Harris-Laplace detector [1],
which uses a scale-adapted Harris corner detector for
spatial point localization and LoG filter extrema for scale
selection. These two steps are performed iteratively,
searching for peaks in both space and scale and rejecting
pixels with responses lower than a given threshold.

Dense-flow with changing scales. A well known limi-
tation of scale selection techniques is that they typically
find reliable scales in only very few image pixels. In [3],
Mikolajczyk estimated that for a scale change factor of
4.4, as few as 38% of the pixels would be selected by a
DoG scale selection criteria, of which only about 10.6%
were actually correct. A bit later, in [2], Lowe estimated
that only around 1% of an image’s pixels provide sta-
ble features which allow for descriptor extraction and
matching. If our goal is to obtain dense correspondences
between two images, the obvious question becomes: how
should scales be selected for the remaining overwhelm-
ing majority of the pixels in the two images?

In recent years there have been several solutions pro-
posed to this problem. In [8], image intensities around
each pixel were transformed to log-polar coordinate
systems. Doing so converted scale and rotation to trans-
lation. Translation invariance was then introduced by
applying FFT, thus obtaining the Scale Invariant Descrip-
tors (SID). Though SID descriptors were shown to be
scale and rotation invariant, even on a dense grid, their
use of image intensities directly implies that they are not
well suited for matching images of different scenes [9].

SIFT flow [5], [6] provides a means for dense corre-
spondence estimation on a dense grid. They represented
pixels in the image using Dense-SIFT (DSIFT) descrip-
tors [7], produced at a constant, manually selected scale.
This provides some scale invariance — due to the inherent
robustness of the SIFT descriptors — but does not address
anything beyond small scale changes. More recently,
in [25], Deformable Spatial Pyramid Matching (DSPM)
was proposed as a fast alternative to SIFT flow. Unlike
SIFT flow, it can be extended to match pixels across scale
differences, though these differences can only come from
a discrete, pre-determined set of scales.

In [9], the DSIFT descriptors used by the SIFT flow
were replaced by the Scale-Less SIFT (SLS) representa-
tion. These are produced by first extracting at each pixel
multiple SIFT descriptors, at multiple scales. The set of
SIFTs extracted at a particular pixel was used to fit a
linear subspace, represented using the subspace-to-point

mapping of [26]. The SLS descriptors were shown to
be highly robust to scale changes as well as allowing
matching between different scenes, but the cost of this
was a quadratic inflation in the descriptor size, making
them difficult to apply in practice.

A different approach was taken by [27]. They too use
SIFT flow as the matching engine, and either DSIFT or
SID as the underlying representations. In their work,
soft segmentation is first performed on images to be
matched. When extracting descriptors, pixels contribute
to the value of the descriptor in a manner which is
inversely proportional to the likelihood of their belong-
ing to the same segment as the keypoint for which
the descriptor is produced. Thus, information from the
background or other scales has a limited effect on the
values of the descriptor. This process requires that all
descriptors be extracted at the same scale, relying here
on the segmentation to introduce scale-dependent infor-
mation. Scales larger than the one used to extract the
descriptors may therefore not be effectively represented.

Rather than modify representations, Qiu et al. recently
proposed a modified dense-flow estimation procedure,
the Scale-Space SIFT flow [10]. Building on the cost func-
tion of SIFT flow they add terms reflecting scale smooth-
ness. Specifically, they add a requirement that the relative
scale of two neighboring pixels will be the same between
their matching pixels in the other image. Though faster
than both SID and SLS, their optimization is slower than
the original SIFT flow. Moreover, their method does not
allow computing scale invariant representations a priori,
a desirable property when preprocessing is allowed or
descriptors are used for applications other than dense
correspondence estimation.

Finally, [28] proposed propagating a sparse set of
matches to all other pixels. They assume a constrained
version of the correspondence estimation problem
where the scene does not contain independently
moving objects or sharp depth discontinuities. They
therefore constrain their estimated flow by limiting
it to affine transformations varying smoothly from a
global affine model. Though this approach is effective
when applied to mosaic construction applications, its
constraints prevent its use for the tasks considered
here. Their approach further involves EM optimization
of the local affine parameters, which can be far more
computationally expensive than our approach.

Non-smooth flow. We use SIFT flow [5], [6] to establish
correspondences between two images. Our emphasis
is in designing per-pixel representations which would
allow matching despite scene and scale changes. Other
methods for establishing correspondences exist and may
conceivably be used instead of SIFT flow with our
representations. These include the DSPM method of [25]
and the Scale-Space SIFT flow [10] mentioned above. A
few additional related methods are surveyed next.

A particularly successful, recent approach to corre-
spondence estimation has been to seek correspondences

0162-8828 (c) 2015 |EEE. Personal useis permitted, but republication/redistribution requires |EEE permission. See
http://www.ieee.org/publications_standards/publicationg/rights/index.html for more information.



This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication.

10.1109/TPAMI.2015.2474356, | EEE Transactions on Pattern Analysis and Machine Intelligence

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, X 201X 4

(b) Detections

(c) Geometric

(d) Image-aware (e) Match-aware

Fig. 2: Visualizing three means of scale propagation. (a) Input images. (b) Sparse interest point detections, using
the SIFT, DoG-based feature detector implemented by vlfeat [7]. Detections are visualized according to estimated
scales. (c-e) Per-pixel scale estimates, S;(p), color-coded. (c) Geometric scale propagation (Sec. 3.1); (d) Image-aware
propagation (Sec. 3.2); (e) Match-aware propagation, described in Sec. 3.3. Note how in (e) similar scale distributions
are apparent for both images. Color-bars on the right provide legends for actual scale values.

which are not necessarily globally smooth. This is in
contrast to the flow fields sought by methods designed
for stereo, motion estimation and the SIFT flow used
here. By relaxing this smoothness requirement, these
methods have been able to dramatically accelerate cor-
respondence estimation run times. These methods in-
clude the Patch-Match [29] and generalized Patch-Match
(GPM) [30], Coherency Sensitive Hashing (CSH) [31],
the Non-Rigid Dense Correspondence (NRDC) method
of [32] and more recently DAISY-Flow [33].

Of these methods, Patch-Match and CSH were de-
signed for matching patches of pixel intensities and
are therefore unsuited for matching images of different
scenes. The results reported in [32] show it to outperform
PGM, a method designed to extend Patch-Match by
allowing it to match across scenes by using robust, per
pixel descriptors (e.g., SIFT). We compare our method
to NRDC and show that by abandoning the requirement
for smoothness, it and these other related methods, are
less suited for stereo-based applications (Section 5.3) and
transfer of semantic information (Section 5.4). Similar
conclusions were also reported by others in the past,
including recently by [25].

Other methods are designed for videos, where changes
in the scene can be assumed to be small and consecutive
frames capture the same physical scene. One example
is [34] which interpolates in fine spatial scales the sparse
matches established at coarse scales. The method was
shown to be very capable at handling occlusions that
appear at from one frame to another due to scene and
camera motion. It was not designed, however, to handle
scale differences between images or correspondences
between images of different scenes.

3 PROPAGATING SCALES

Scale-invariant correspondences (dense or otherwise) are
typically achieved through scale selection. To establish

dense correspondences, here, we seek dense scale selection:
selecting scales for all the pixels in the image.
Formally, the scale space of image I(z,y), denoted by
L(z,y,0), is defined by a convolution of I(z,y) with a
variable-scale Gaussian G(z,y, o) [35], where

L(z,y,0) = G(z,y,0) x I(z,y) 1)
and
1 (22442) /202
Gla,y,0) = 5—ge TP @

The scale space of an image is scanned by multi-scale
feature detectors, which seek space-scale locations z,y, o
where stable scales can be determined reliably, typically
by seeking extrema in a scale-selection function defined
over L(z,y,0).

Most pixel coordinates, however, do not have such
extreme values, and are therefore left without scale
selection. In the texture rich images of Fig. 2(a), for
example, less than 0.1% of the pixels in each image were
selected by the SIFT, DoG-based, feature detector, and
assigned with scales (Fig. 2(b)). Our goal is to use these
few detected pixels and their scale assignments in order
to estimate scales for all the remaining image pixels.

We define the scale-map S;(p), for pixel p = (z,y),
of image I as providing the scale op associated with
pixel coordinates p in I. Our goal can be stated
as assigning scale values to all pixels in S;. To this
end, our key underlying assumption is stated as follows:

Assumption: Similar pixels should have similar scales.

This assumption, of course, leaves the notion of simi-
larity open for interpretation, as well as the means of
assigning scales in practice. Formally, we express this
general assumption by defining a global cost for a scale
assignment, as follows:
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Similar expressions have previously been proposed
for image processing tasks ranging from segmentation
(e.g. [36], [37], and others) to colorization [38] and depth
estimation [39]. Here, we assign scales to all image pixels
by minimizing Eq. 3, subject to the constraints expressed
by the known scales — the few pixels selected by a multi-
scale feature detector, their positions in the image, and
their assigned scales.

Intuitively, this cost interprets our assumption by re-
quiring that the scale assigned to pixel p should be as
similar as possible to a weighted average of the scales
of its relevant similar pixels, denoted by q € N(p). The
weight wpq, associated with each of these pixels p and q,
is often referred to as an affinity function and takes values
which sum to one for all pixels q. It reflects the degree
to which the scale of one pixel is assumed to influence
another. In the next sections we consider two alternatives
for this function, based on different interpretations of
pixel similarity.

3.1

Assuming that the only information available to
us are the pixel locations and scales returned by a
feature detector, we make the following “geometric”
assumption, where pixel scales are influenced by the
scales of their spatially neighboring pixels:

Geometric scale propagation

Assumption 1, Influence of feature geometry on scales:
Neighboring pixels (pixels with adjacent coordinates)
should be assigned with the similar scales.

This assumption can be interpreted as using a constant
value for all affinity functions, or wpq = 1/|N| (|N| the
number of spatial neighbors for each pixel). Our cost
function is quadratic and our constraints are linear. This
implies large, sparse systems of equations which may be
solved using a range of existing solvers [36], [38], [39].

Fig. 2(c) presents the scale-maps produced for each
image using geometric scale propagation. Visually, these
maps may appear too noisy to be meaningful. In prac-
tice, as we show in Sec. 5, scales computed this way can
still be beneficial for correspondence estimation.

3.2 Image-aware scale propagation

The use of constant affinity values is convenient
whenever recomputing them for each image pair is
impractical. Propagating scales using only the geometry
of the feature point detections, however, ignores image
intensities as valuable cues for scale assignment. We
now consider the influence of intensities by revising
our previous assumption.

Assumption 2, Influence of intensities on scales:
Neighboring pixels with similar intensities, should be
assigned with similar scales.

This assumption can be expressed by assigning affinity
values based on the normalized cross-correlation of the
intensities of the two pixels, or:

1

wpq =1+ — ((I(P) — pp)(I(q) — pip)) - 4)

Op?2
Here, pp and op are the mean and variance of the
intensities in the neighborhood of pixel p.

This expression has successfully been used in the past
for image colorization in [38]. Earlier, it was shown to
reflect a linearity assumption on the relation of color and
intensities in [40] and [41]. By using it here, we assume
a linear relation between intensities and scales, rather
than color. That is, that S;(p) = apl(p) + bp with the
coefficients a, and b, being the same for all the pixels
in the immediate neighborhood of p.

Fig. 2(d) visualizes the scale-maps produced by image-
aware propagation. These capture more of the under-
lying image appearance than the ones produced by
the simpler geometry based method. In particular, the
distribution of scale assignments for the two images has
more regions in common, suggesting better repeatability.
Still, quite a lot of both images includes non-matching
scale assignments, which we minimize next.

3.3 Match-aware scale propagation

As evident in Fig. 2(b), the sets of feature point
detections in the two images are not identical. In fact,
we expect only a small number of features to be correctly
detected and common to both images (as discussed in
Sec. 2). Here, these few corresponding pixels are used
to seed the scale-map assignment process:

Assumption 3, Influence of matching feature points:
When two images are being matched, scales should
be assigned by considering feature point detections
common to both images.

Rather than using all the detected feature points to seed
the scale assignments, we first seek correspondences
between the scale invariant descriptors, extracted at
these sparse locations. This, in the same way that such
correspondences are computed and used for parametric
image alignment [2]. We take the 20% of the corre-
spondences with the best closest to second-closest SIFT
match ratio [2], and use only their scales to seed scale
propagation in each image.

The result of this process is visualized in Fig. 2(e),
which clearly shows corresponding regions of scale
assignments: the same regions are assigned with high
(low) scales in the two images.
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Comparison with [42]: It is instructional to compare the
process described here with the one used for 3D recon-
struction from multiple views in [42]. They too begin
with feature point extraction and sparse correspondence
estimation. Their correspondences are used to build a
preliminary 3D point cloud and estimates for the camera
matrices of each input image. A continuous 3D surface is
then produced by an “expansion” process which uses the
initial correspondences to seed a search for neighboring
matches in an effort to obtain dense correspondences.

We also use an initial, sparse set of correspondences to
seed a search for dense correspondences, by propagating
information to neighboring pixels. Here, however, we
expand the scale estimates, not the correspondences
themselves. This is performed for a single pair of images
and without going through the process of 3D reconstruc-
tion and camera parameter estimation.

4 DISCUSSION: SCALE VS. FLOW ACCURACY

The assumptions underlying our method guarantee that
some scales will be repeatable from one image to the
next. In particular, the scales at interest points com-
mon to both images, in the match-aware propagation
of Sec. 3.3, will be covariant and would allow extraction
of invariant descriptors. We expect that others, however,
may still be inconsistent, resulting in descriptors pro-
duced at wrong scales with different feature values. It is
therefor reasonable to consider: How does wrong scale
assignments affect the overall flow quality?

To answer this question, we consider the method used
for dense correspondence estimation, here, the SIFT flow
of [6]. It uses belief propagation to minimize the follow-
ing cost, defined over the estimated flow field (warp)
w(p) = [u(p),v(p)]T from each pixel in the source image
14 to its corresponding pixel in the target image Ip:

F(w) =Y min(||f(I1,p, Sa(P))

— f(Ip,p+w(p),Se(P+wW(P)))l1, k)
+> v (ju(p)] + [v(p)]) ®)
+2.

(p1,pP2€N)
min (a|v(p1) — v(p2)|,d) ]

[ min (afu(p1) — u(p2)l, d)+

Here, k and d are constant thresholds and N defines
a neighboring pixel relationship (e.g., p1 and p, are
nearby). f represents the SIFT feature transform, where
we make explicit the scales used for computing the
descriptors, represented by the scale-maps S4 and Sp.

The second term in Eq. 5 represents a requirement for
small displacements and the third reflects a requirement
for a smooth flow-field. Only the first term is affected
by scale estimates and so, presumably, minimization
of Eq. 5 should be at least partially robust to scale
estimate errors. In practice, the success of SIFT flow

Endpoint error

Fig. 3: Effect of wrong scale estimates on flow accuracy
using SIFT flow [6]. Top: Scale-maps for 20%, 50%, and
80% scale assignment errors, visualized by color coding
scales (color-bar on the right). The correct scale is the
default value of 2.667 for all pixels. Mid: Visualizing the
assigned scales, for every 15th pixel. Bottom: Angular
errors (left) and endpoint errors (right), £ SE, for increas-
ing errors in scale estimates. Evidently, flow remains
accurate up until about 20% errors rates.

using Dense-SIFT (DSIFT) descriptors implies that this is
indeed the case: DSIFT uses a single, arbitrarily selected
scale for all pixels and so one would expect that at least
some pixels would have wrong scale estimates.

Empirical evaluation. We empirically evaluate this tie
between scale estimate accuracy and flow accuracy, in
order to gain a measure of the robustness of SIFT flow to
scale estimation errors. To this end, we compute the SIFT
flow between images and themselves using increasing
amounts of scale assignment errors.

Initially, the same constant scale is used for all pixels
in each image pair. Using the default parameters of
the SIFT extraction routine of [7], we take the SIFT
bin size to be 8 pixels and the magnification factor to
be 3, resulting in a scale value of 8/3 = 2.667. We
then progressively add noise to the scale-map of the
target image by randomly selecting increasing numbers
of pixels and adding Gaussian noise, with mean zero
and STD of 2, to their assigned scales.

Fig. 3(top) shows scale-maps with noise added to 20%,
50%, and 80% of the pixels. These synthetically modified
scale-maps were used to extract SIFT descriptors (visu-
alized in Fig. 3(mid)), which were then matched using
SIFT flow. The quality of the resulting flow is evaluated
by considering the angular and endpoint errors [43].

Fig. 3(bottom) plots the effect of wrong scale estimates
vs. these two errors measures (+ SE not shown as it
was very small). Evidently, the endpoint errors reported
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in Fig. 3(bottom) remain almost zero, up until a rate
of half the image pixels being assigned with wrong
scales. Angular errors appear more sensitive to the noise,
beginning to grow at 20% scale assignment errors.

In a practical scenario, simply resizing one of the
images would result in all its pixels being assigned
wrong scales. Fig. 3 suggests that in such cases dense
correspondence estimation would fail completely, which
was indeed shown to be true for SIFT flow in [9]. The
figure also suggests, however, that it may be sufficient to
bring scale assignment errors down to only 20% in order
for accurate dense correspondences to be obtained.

5 EXPERIMENTS

We tested our methods on a wide range of tasks, bench-
marks and image settings. Our experiments (with the
exception of NRDC [32] and DAISY-Flow [33]) all use
SIFT flow [6] to compute the dense correspondences,
varying the representations used in order to compare
the following alternatives: Dense SIFT (DSIFT) [7]; Scale
Invariant Descriptors (SID) [8]; Scale-Less SIFTs (SLS) [9];
and the two descriptors from [27] — the segmentation
aware SID (Seg. SID) and the segmentation aware SIFT
(Seg. SIFT). Our reports omit results for representations
which performed considerably worst than others.

In all cases, we used the code published by the
respective authors of each method with their recom-
mended parameters unchanged. These methods were
compared against our own geometric scale propagation
(Geo.), image-aware propagation (Image) and match-
aware propagation (Match). We note that due to the use
of color information by the NRDC method, it was the
only method to have color images as its input; all other
methods used grayscale images.

5.1 Implementation details

We implemented all three versions of our scale prop-
agation technique in MATLAB. The multi-scale feature
detections used by our proposed methods were obtained
using the standard SIFT detector, implemented in the
vlfeat library [7]. Minimizing the sparse system of equa-
tions resulting from the cost of Eq. (3) was performed
using the built-in MATLAB solver, computed on neigh-
borhoods of 3 x 3 pixels. Finally, scale-varying, dense
SIFT descriptors were extracted with vlfeat [7].

In order to allow for easy reproduction of our
results and the use of scale propagation in other tasks
our code is publicly available online, on the project
webpage!. Please see the project webpage for updates
and additional details.

Run-time: Run-time was measured on an Intel Core
i5 CPU, 1.8GHz, with 4GB of RAM and running 64Bit
Windows 8.1. We use very small images for these tests
(78 x 52 pixels) in order to avoid measuring run-time

1. From: www.openu.ac.il/home/hassner/projects/scalemaps

TABLE 1: Comparison of different descriptor dimen-
sions, and flow-estimation run-time. Mean run-times
were measured using SIFT flow, on 78 x 52 pixel images.

Method Flow run-time (sec.) Dim.
DSIFT [6] 0.8 128D
SID [8] 5 3,328D
SLS [9] 13 8,256D
Seg. SID [27] 5 3,328D
Us 0.8 128D

required for swapping memory, when using the more
memory intensive representations (SID and SLS).

Descriptor sizes and flow-estimation run-times are
summarized in Table 1. Descriptor dimensions were
those measured in practice when running the code pro-
vided by the authors of each method. Our own approach
involves extracting a single, 128D SIFT descriptor per
pixel — the same storage required by the DSIFT descrip-
tor used in the standard SIFT flow implementation, and
an order of a magnitude less storage than required by both
the SID and SLS representations. Not surprisingly, the
time required for establishing flow using our method is
the same as the time required for the original SIFT flow,
at least an order of magnitude less than the SID and SLS
descriptors.

Finally, we compared the time required for optimizing
our cost function of Eq. (3) (propagating the scales) with
the time required by SIFT flow to estimate correspon-
dences. Here, we varied the size of the images from the
original 78 x 52 pixels to 780 x 520 pixels. For all image
sizes, scale propagation required less than 7% of the time
for computing the correspondences themselves, using
SIFT flow. Consequently, SIFT flow performed following
scale propagation requires only slightly more time than
running SIFT flow once, without scale propagation.

5.2 AQualitative results

Figures 1, 4, 5 12 and 13 all show hallucination re-
sults obtained by computing dense flow from source to
target images and then warping the target colors back
to sources using these flows. In all cases, good results
would have the target image colors warped to the shapes
appearing in the sources.

The results included in these figures were all selected
in an effort to reflect challenging dense correspondence
estimation tasks. Image pairs exhibit extreme variations
in local scales, different scenes, different viewing condi-
tions and more. We additionally emphasize cases where
images have large homogenous regions. Existing feature
detectors typically cannot estimate local scales in such
image regions. By propagating scale estimates, we allow
for scale-invariant descriptors to be extracted and dense
correspondences to be estimated even in such cases.

Fig. 5 provides a comparison of the three proposed
methods of propagating scales: Geometric scale propa-
gation (Sec. 3.1), image-aware propagation (Sec. 3.2), and
match-aware propagation (Sec. 3.3). Evidently match-
aware propagation provides the most coherent results,
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i

Fig. 4: Image hallucination results. Each row presents dense correspondences established from source to target
image, illustrated by warping the target back to the source using the estimated flow. The following methods
and representations are compared, from left to right: DSIFT [7], SID [8], SLS [9], Segmentation aware SID (Seg.
SID) [27], DAISY-Flow [33] and SIFT descriptors extracted using our Match-aware scale propagation. In nearly all
these examples NRDC [32] failed to find matches between the two images and is therefore omitted from this figure.
Good results should have the colors of the target photos, warped to the shapes appearing in the source photos.

though its two simpler alternatives are comparable in
the quality of their results.

Though the results obtained with our Match-aware
scale propagation (Fig. 4, rightmost column) are some-
times qualitatively similar to those obtained by other
representations, ours consistently produces good results.
This, despite much lower run-time and storage re-
quirements compared to the scale-invariant descriptors,

SID, SLS, and Seg. SID. Unsurprisingly, DSIFT performs
worst when applied to image pairs with scale changes.

5.3 Middlebury stereo correspondence results

We repeat the qualitative experiments reported in [9],
measuring the accuracy of stereo correspondences in the
presence of extreme scale changes. We use the well-
known Middlebury data set [43], containing pairs of
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Image Aware Match Aware

Fig. 5: Image hallucination results - comparison of proposed methods. Each row presents dense correspondences
established from a source image to its target, illustrated by warping the target back to its sources using the estimated
flow. We compare our proposed methods for propagating scales, from left to right: Geometric scale propagation
(Sec. 3.1), image-aware propagation (Sec. 3.2), and match-aware propagation (Sec. 3.3). Each hallucination result
provides also a visualization of the estimated flow field. Flow legend is provided on the bottom right.

TABLE 2: Results on the scaled-Middlebury benchmark. Angular errors (AE) and endpoint errors (EE), = SD, on
resized images from the Middlebury benchmark [43]. Lower scores are better; shaded cells are best scoring.

Data DSIFT [6] SID [8] NRDC [32] SLS[9] Seg. SIFT [27] Seg. SID [27] Geo. Image Match
Angular Errors £+ SD
Dimetrodon 313 £ 4.0 0.16 £03 447 +£153 017 £05 245 £28 023 +£0.7 061 £0.7 295+ 4.2 FEESH
Grove2 389 £ 119 0.66 £44 3.06 £13.7 0.15+03 477 +15.3 022 +0.6 230+23 1.78 £ 2.1 kRN
Grove3 267 £28 162469 433+ 177 EEETEH 893 £ 156 022+06 626+193 172+21 017 +04
Hydrangea 976 £ 18.0 032 +06 128+£39 022408 710+ 10.6 023 +£07 1.724+23 6.25 & 11.6 AV
RubberWhale 527 £86 016 £03 896 £248 0.15+03 613+172 016+ 03 156 +21 3.31 £ 5.4 FEEES
Urban2 3.65 £10.7 037 +2.7 825+213 032+13 282+41 025+ 11 053+08 428+ 6.8 FUEEI=EG
Urban3 387 +£51 027 £0.6 479 +£10.7 035+09 353 44 031 +1.0 143 +£196 3.79 £ 79 A
Venus 266 +29 024406 401 + 139 JEFEEE 277 + 67 PEFEEIEN 132 +12 243 +23 027 £ 06
Endpoint Errors &+ SD
Dimetrodon 10.97 £+ 8.7 14.56 +272 08 +04 1034 £ 7.5 097 £11 2724+15 1121 £102 0.75 £ 0.3
Grove2 1438 £ 11.5 1.5 450 726 £200 0.77 £04 1550 £11.0 10519 128 £102 9.06 94
Grove3 13.83 £ 9.7 448 £10.5 14.7 £+ 282 JEVES 24.33 £20.0 137 £33 144+ 147 922+77 113425
Hydrangea 2532 £17.1 1.59 £2.8 4.62 £125 091 £1.1 2421 +173 088 £ 0.6 102+ 89 15.69 + 19. 2 IFZE=aIk]
RubberWhale 2259 + 158 0.73 £1.1 150 £25.0 0.8 +£04 1733+ 148 073 £04 7.63 £85 11.27 & 15.6 WF==ifc]
Urban2 18.96 £ 17.5 133 +£3.8 27.1 4+ 327 151 £54 1336+ 103 121 +3.7 273+ 17 15.51 & 15.2 00kl
Urban3 19.83 £ 17.1 155 3.7 20.0 £283 9.41 £246 1544 £ 115 147 +41 610 £4.9 1491 £ 15.00(EIE==0K)
Venus 9.86 + 87 1.16 +3.8 9.61 + 18.3 [ UZEUEN 11.86 + 11.4 ZEIERE 425 + 20 1092 + 11.5 0.75 + 0.3

images of the same scenes, acquired from different view-
points. Since these images do not include scale changes
these are introduced by re-sizing both images in each
pair, one to 0.7 its size and one to 0.2 (the original sizes
are not used due to limitations of memory for the large
SLS and SID descriptors). Our tests include the image
pairs with ground truth dense correspondences, which
we use to compute Angular Error (AE) and Endpoint
Error (EE) rates, along with standard deviations (+
SD) [43] for each of the representations tested.

Our results are reported in Table 2. These demonstrate
that by propagating scales we achieve better accuracy on
almost all of the tested methods, falling in only slightly
behind the far more expensive multi-scale representa-
tions, when this is not the case. Note that the NRDC

method of [32] performs substantially worst than others,
as it does not ensure global consistency of the obtained
flow. It is not designed and therefore less suited for the
stereo correspondence estimation task considered here?.

We next measure the accuracy of the more economic
methods on the original, un-scaled Middlebury images.
We report results in Table 3 of only the original SIFT
flow using DSIFT and our own Match-aware scale
propagation, as well as NRDC [32]. Remarkably, scale
propagation produces better correspondences than those
obtained with fixed, constant scales, even when the two
images are in the same scale. This suggests that by
propagating scales, features extracted on a dense grid

2. Code for DAISY-Flow [33] was only released months after sub-
mission of our paper and so their empirical results are not included.
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TABLE 3: Results on the Middlebury benchmark, not
scaled. Angular errors (AE) and endpoint errors (EE),
+ SD, on images from the Middlebury benchmark [43].
Lower scores are better; shaded cells are best scoring.

Data DSIFT [6] NRDC [32] Match
Angular Errors £ SD
Dimetrodon 1655 £16.6 199 £ 12.9 FHEREI SIGH0)
Grove2 111 £ 1251 175 £ 11.0 FRlREEE SN i)
Grove3 16.76 £ 20.16  22.8 £ 24.6 RIS NRICL]
Hydrangea 13.28 £ 21.07  23.3 4 17.6 |G ES=NERE
RubberWhale 193 £ 2396  43.5 £ 17.6 | IEE bRt
Urban2 13.93 £ 21.56 23.5 £ 22.5 FELEIGESNN
Urban3 151 £ 30.79  27.4 £ 38.7 BRI SVER (G
Venus 13.18 £ 30.3  30.9 £ 31.4 Ak —Aley/
Endpoint Errors &+ SD
Dimetrodon 0.67 &+ 0.53 151 £ 04 0.65 & 0.63
Grove2 1.68 £ 54 0.77 + 1.04
Grove3 17 £ 1.86 3.14 £ 194 PEERESWE
Hydrangea 1.04 £+ 145 1.66 £ 1.95 IR
RubberWhale  0.61 & 0.72 152 £ 1.11 0.52 £ 0.68
Urban2 178 £ 425 2754135 112+ 23
Urban3 1.84 £ 3.1 414 + 195 1.44 £ 3.04
Venus 097 £142 311 £11.0 0.63 £ 1.0

capture richer information than those extracted using
single scales, even in the absence of scale differences
between the images.

5.4 Multi-layered motion segmentation

Dense flow computed between a query photo and a
galley image with ground-truth segmentation allows for
the segmentation to be transferred back to the query.
Following [27], we evaluate the quality of the flow
by measuring segmentation accuracy of images in the
Berkeley Motion Segmentation dataset (Moseg) [44], us-
ing ten traffic videos captured with a hand-held camera
and their ground truth segmentations. These videos ex-
hibit motion in multiple layers and so reflect challenging
instances of the motion estimation task.

Evaluation is performed by pairing the first frame in
each of the ten traffic sequences with all its successive
frames for which ground truth exists (31 frame-pairs in
total). All frames were rescaled to 33% their original
size to allow for comparison with the full SLS and SID
descriptors and their substantial memory requirements.
Performance is measured by running SIFT flow between
pairs of frames, using each of the tested descriptors. The
obtained flow is then used to warp the segmentation
mask from the target frame to the source. Flow quality
is measured by computing the Dice coefficient [45] of
the overlap between the frame’s ground truth and the
warped segmentation.

Results comparing the different representations are
provided in Fig. 6. Evidently, despite being an order of
magnitude smaller in size and requiring far less time to
run, the proposed Match-aware propagation performs
comparably to the SID descriptor of [8] and is only
outperformed by the segmentation aware SID [27]. This
performance should be compared with both the orig-
inal DSIFT and the Segmentation aware SIFT, both of

- 4 - Seg. SIFT
—4— Seg. SID

Overlap (Dice coefficient)

--o--Geo.

- @ - Image

—e— Match

10+ 20+ 30+ 40+ 50+ 60+
Frame difference

Fig. 6: Quantitative results on the Moseg bench-
mark [44]. Average overlap between estimated and
ground-truth segmentations for frame pairs separated
by increasing temporal intervals. Our match-aware scale
propagation (shaded blue line) is only outperformed by
Seg. SID [27] and on-par with SID [8], despite being an
order of magnitude faster and smaller than both.

which performing worst. This testifies to the effective-
ness of scale estimation, even in scenes where the scales
throughout most of the frames remains unchanged; re-
confirming the results provided in Table 3. Note that
here too, the absence of global smoothness in the NRDC
method of [32], results in poorer global segmentations.
Qualitative examples of the warped frames are provided
for some of the tested methods in Fig. 7.

5.5 Single-view depth estimation from examples

Dense correspondence estimation has been shown to
provide an effective means for single-view depth estima-
tion by transferring known depth values from reference
image pixels to those of a query image [13]. We test the
influence of our match-aware scale propagation on the
quality of the depth-maps estimated using this approach.

In order to isolate the contribution of scale propaga-
tion, we focus on single image depth estimation, rather
than videos. Our tests use the depth-transfer evaluation
code released by [13] and the Make3D data from [46].
This data consists of 400 training (reference) images
and 134 test (query) images all with known ground
truth, per-pixel depth values. In order to compare our
performance with those of the larger representations, we
rescaled all images to 10% of their original size and used
only thirty, randomly selected test images.

For a given query image, the evaluation code seeks
its kK = 7 nearest neighbor references (see [13] for more
details). Correspondences between the query image and
each of these references are estimated using SIFT flow.
A final depth estimate Dy, is inferred by a depth opti-
mization process applied to the warped reference depths.
Match-aware propagation is applied to the query and
each of the seven selected references in turn.

A depth estimate is compared with the known ground
truth, Dy, using the following error measures: The Root
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Target

Fig. 7: Qualitative Moseg benchmark [44] results. Each result shows the ground truth segmentation of the objects

in the image drawn in red over the warped target photos.

TABLE 4: Make3D [46] benchmark, quantitative results.
Single image depth estimation results using the Depth
Transfer approach of [13]. Match-aware scale propaga-
tion achieves error rates comparable to the multi-scale
representations, despite being far smaller.

Representation RMSE logl0  Relative
DSIFT [6] 15.127  0.165 0.419
SID [8] 15.340 0.174 0.420
SLS [9] 15.396  0.164 0.400
Seg. SID [27] 14.785 [ONEEZ! 0.391
Match RN 0.155 0.408

2
Mean Square Error (RMSE), \/ Ef\; L ( Dq, — D} ) /N,
|logy(Dq) — logi(Dg)l, and the

Do-D
M . All values were averaged

the log,, Error, (log;),
Relative Error (REL),

over all pixels and all N = 30 query images.

Quantitative depth estimation results are reported in
Table 4. These are consistent with our previous results,
demonstrating that scale propagation results in better
per-pixel scale selection and better dense representa-
tions. This, in turn, results in more accurate matches,
compared to the original DSIFT representation. More-
over, the accuracy obtained with scale propagation is
comparable to the multi-scale representations, despite
being an order of magnitude smaller in size’.

In Figure 8 we additionally provide a number of
qualitative depth estimation examples. From these it is
apparent that the original DSIFT representation, without
scale selection, results in a more blurry depth result, per-
haps due to a greater emphasis on smooth displacements
in the SIFT flow optimization, in the absence of good
matches between the descriptors themselves [9].

5.6 Semantic segmentation
We next apply dense correspondences with scale propa-
gation to the task of semantic segmentation in order to

3. Despite working closely with the authors of NRDC [32], we were
unable to use their implementation with the Depth-Transfer pipeline.

DSIFT Match

Query

Fig. 8: Make3D [46] benchmark, qualitative examples.
Single image depth estimation results using the Depth
Transfer of [13]. Left to right: Input image; depth esti-
mated using the standard DSIFT representation; depth
estimated using our match-aware scale propagation; the
ground truth. See text for more details.

measure the gain in performance by extracting variable
scale SIFT descriptors compared to the original DSIFT.
To this end we use the LabelMe Outdoor (LMO) data set
of [14]. It includes 2,688 outdoor images, all accompanied
with dense, per pixel labels. These labels, obtained using
the LabelMe online annotation tool, assign each pixel to
one of 33 semantic classes, e.g., car, sky, trees etc.

The test protocol used here follows the one originally
described in [14]. It involves randomly splitting the
images into 2,466 training and 200 testing images. Test
images are semantically segmented and the accuracy of
these segmentations is then measured by considering
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DSIFT (62.09%) Match-aware (65.81%)

Fig. 9: LMO [14] semantic segmentation results. Num-
bers of correctly labeled pixels from each category. Re-
sults compare identical pipelinesc with DSIFT used (left)
and our Match-aware scale propagation (right).
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Fig. 10: Example LMO benchmark [14] results. From
left to right: Input test image; the most similar refer-
ence image; the per pixel labels of the reference image;
labels estimated using DSIFT; labels estimated using
our Match-aware scale propagation; finally, ground truth
labels of the input image.

the average pixel-wise recognition rate (essentially, the
percent of pixels correctly labeled of all the pixels with
ground truth label assignments).

Segmentation itself is performed using the method
and code from [14], modifying the per pixel represen-
tation to compare the original DSIFT with our Match-
aware scale propagation method. In broad terms, a test
image is segmented by retrieving a short list of k£ = 7
matching reference images from the training set. SIFT
flow is then used to estimate correspondences from the
test image to each of the reference images. This provides
each pixel in the test image with multiple estimates for
a semantic label, one from each of the reference images.
A probabilistic model is then used to determine a single
label assignment for each pixel by considering the labels
assigned to itself and its neighbors.

The results reported here for both the original DSIFT
and our Match-aware scale propagation were obtained
with the same short list of reference images; different

Labels Match

Test Best match

Fig. 11: Failed semantic segmentation result. A typical
error due mostly to poor selections of reference images.
The impact of reference selection on segmentation accu-
racy has been noted in the past by others (e.g., [14]).

results reflect only the quality of the estimated corre-
spondences. Match-aware propagation is performed by
forming correspondences between the test image and
each of the reference images in the short list. Hence, we
extract descriptors for each test image multiple times,
one for each scale-map estimated for the test image using
each of the reference images, in turn.

The frequencies of correctly estimated semantic labels
are presented in Fig. 9, along with the overall accuracy of
both methods. Apparently, by introducing non-uniform
scale estimates here too we obtain more discriminative
features and better dense correspondences. This results
in an almost 4% improvement in favor of our scale
propagation approach®. Fig 10 visualizes a number of
segmentation results obtained with the original DSIFT
and our Match-aware scale propagation. Fig. 11 provides
a typical example of a failed segmentation result. The
failure here is clearly the result of poor selection of
reference images and impacts both methods compared
(though only our own result is shown here).

5.7 Match-aware propagation failure analysis

There may be different reasons for failures to accurately
estimate dense correspondences. This often happens ei-
ther because the two images have substantially different
content (e.g., Fig. 12, top row) or because SIFT features
are not invariant to the transformations between the
two images (Fig. 12, bottom row). Before affecting dense
correspondences, however, such cases also impact the
quality of correspondences established between SIFT
descriptors at sparse interest points and, by that, may
lead to faulty scale assignments when using Match-
aware scale propagation (Sec. 3.3).

Fig. 13 provides an example of the effect faulty sparse
matches have on scale propagation and dense corre-
spondence estimation. It presents source (Fig. 13 (a))
and target (Fig. 13 (b)) images from the same scene
viewed in different scales. Scales were propagated by
first matching SIFT descriptors at sparse interest points
using the criteria originally prescribed in [2]: If the dis-
tance between a source image SIFT descriptor to its most
similar target descriptor multiplied by a threshold 7 is
greater than its distance to all other target descriptors,

4. The result reported for DSIFT is slightly lower than the one in [14].
We believe this may be due to different random splits used by them
and us. The two results reported here used identical splits.
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Source Match

Target

Fig. 12: Example failures. Results produced similarly to
Fig. 4. Top: Images of entirely unrelated scenes with little
visual information in common. Bottom: SIFT descriptors
are not invariant to flipped image intensities.

Fig. 13: Match-aware failures analysis. (a-b) Source and
target images, respectively. (c-d) Scale-maps produced
using Match-aware scale propagation and a sparse cor-
respondence selection threshold of 7 = 1.5; (c) is the
source image scale-map and (d) is the target scale-map.
(e-f) Scale-maps using a threshold of 7 = 3; (e) is
the source scale-map and (f) the target scale-map. (g-h)
flow visualized as image hallucinations, estimated using
7 =1.5(g) and 7 = 3, (h). Please see text for more details.

then the match is discarded. Higher values of 7 produce
fewer yet typically more reliable initial matches.

Fig. 13 (c-d) show scale-maps estimated with 7 = 1.5
and Fig. 13 (e-f) scale maps estimated with 7 = 3 (fewer
initial correspondences used to propagate the scales;
note how these scale-maps have fewer details than those
in (c-d)). Fig. 13 (g) shows the image hallucination result
produced using dense correspondences estimated with
7 = 1.5. Faulty correspondences are clearly visible at the
bottom of the face. Fig. 13 (h) shows the result produced
with 7 = 3. Here, the face region visible in the target
image was warped correctly to the source.

The faults in Fig. 13 (g) can easily be traced to the

scale-maps of Fig. 13 (c-d): By including less reliable cor-
respondences, scales from mismatched pixels potentially
propagate wrong scales. SIFIs extracted using these
scales will capture different visual information and will
therefore not match. The Image-aware propagation of
Sec. 3.2 can be considered an extreme example of this,
where all interest points are used to propagate scales,
without filtering. Our results in Sec. 5.2 and 5.3 show
the difference in performance between Image-aware and
Match-aware propagation, providing a sense of the effect
poor sparse correspondences can have on the quality of
flow estimated following Match-aware propagation.

Reducing the amount of unreliable sparse correspon-
dences prior to scale propagation can prevent prop-
agation of wrong scales, as evident in Fig. 13 (h).
This, however, when taken to extreme by using overly-
conservative threshold values 7, may eliminate all cor-
respondences. In such cases our method reduces to
standard SIFT flow with constant scales assigned to all
pixels in both images (i.e., DSIFT).

6 CONCLUSIONS

Modern computer vision systems owe much of their
success to the development of effective scale selection
techniques, key to the extraction of local, scale-invariant
descriptors. These widely used techniques have focused
almost entirely on the few image locations where local
appearance variations provide sufficient cues for select-
ing reliable (repeatable) scales. In contrast, we propose
a means for determining reliable scales for all the pixels
in the image, regardless of their local appearances.

We describe three means of propagating scales from
pixels selected by a standard feature detector to all other
pixels. Our approach allows for truly scale-invariant
dense SIFT descriptors to be extracted and then matched
between images. An important aspect of our method, is
that unlike alternatives proposed in the recent past, it
makes very little computation and storage requirements
beyond those needed for matching standard, non scale-
invariant, dense SIFT descriptors. The result is a practi-
cal, effective, and efficient method for establishing dense
correspondences across scenes.

Our method was tested qualitatively, by producing
image hallucination results for challenging image pairs,
as well as quantitatively for its flow accuracy, and utility
in transferring segmentation and depth labels. These
have all shown how propagating scales contributes to
reliable and robust dense correspondence estimation.

This paper opens a number of prospective directions
for future research. One immediate possibility is to
explore how well other transformations, chiefly local
orientation, may benefit from a similar approach. Our
initial experiments conducted by adding an orientation-
map, analogous to the scale-maps used here, were in-
conclusive. We believe this is because rotation may be
a more global phenomenon compared to scale; rotations
are often applied to entire images whereas scales fre-
quently change from one portion of the image to another.
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Further study is required to see if and how orientation
can also benefit from a similar approach.
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