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Abstract

Automatic age and gender classification has become rel-
evant to an increasing amount of applications, particularly
since the rise of social platforms and social media. Nev-
ertheless, performance of existing methods on real-world
images is still significantly lacking, especially when com-
pared to the tremendous leaps in performance recently re-
ported for the related task of face recognition. In this paper
we show that by learning representations through the use
of deep-convolutional neural networks (CNN), a significant
increase in performance can be obtained on these tasks. To
this end, we propose a simple convolutional net architecture
that can be used even when the amount of learning data
is limited. We evaluate our method on the recent Adience
benchmark for age and gender estimation and show it to
dramatically outperform current state-of-the-art methods.

1. Introduction
Age and gender play fundamental roles in social inter-

actions. Languages reserve different salutations and gram-
mar rules for men or women, and very often different vo-
cabularies are used when addressing elders compared to
young people. Despite the basic roles these attributes play
in our day-to-day lives, the ability to automatically estimate
them accurately and reliably from face images is still far
from meeting the needs of commercial applications. This is
particularly perplexing when considering recent claims to
super-human capabilities in the related task of face recogni-
tion (e.g., [48]).

Past approaches to estimating or classifying these at-
tributes from face images have relied on differences in fa-
cial feature dimensions [29] or “tailored” face descriptors
(e.g., [10, 15, 32]). Most have employed classification
schemes designed particularly for age or gender estimation
tasks, including [4] and others. Few of these past meth-
ods were designed to handle the many challenges of uncon-
strained imaging conditions [10]. Moreover, the machine
learning methods employed by these systems did not fully

Figure 1. Faces from the Adience benchmark for age and gen-
der classification [10]. These images represent some of the
challenges of age and gender estimation from real-world, uncon-
strained images. Most notably, extreme blur (low-resolution), oc-
clusions, out-of-plane pose variations, expressions and more.

exploit the massive numbers of image examples and data
available through the Internet in order to improve classifi-
cation capabilities.

In this paper we attempt to close the gap between auto-
matic face recognition capabilities and those of age and gen-
der estimation methods. To this end, we follow the success-
ful example laid down by recent face recognition systems:
Face recognition techniques described in the last few years
have shown that tremendous progress can be made by the
use of deep convolutional neural networks (CNN) [31]. We
demonstrate similar gains with a simple network architec-
ture, designed by considering the rather limited availability
of accurate age and gender labels in existing face data sets.

We test our network on the newly released Adience
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benchmark for age and gender classification of unfiltered
face images [10]. We show that despite the very challenging
nature of the images in the Adience set and the simplicity of
our network design, our method outperforms existing state
of the art by substantial margins. Although these results
provide a remarkable baseline for deep-learning-based ap-
proaches, they leave room for improvements by more elab-
orate system designs, suggesting that the problem of accu-
rately estimating age and gender in the unconstrained set-
tings, as reflected by the Adience images, remains unsolved.
In order to provide a foothold for the development of more
effective future methods, we make our trained models and
classification system publicly available. For more infor-
mation, please see the project webpage www.openu.ac.
il/home/hassner/projects/cnn_agegender.

2. Related Work

Before describing the proposed method we briefly re-
view related methods for age and gender classification and
provide a cursory overview of deep convolutional networks.

2.1. Age and Gender Classification

Age classification. The problem of automatically extract-
ing age related attributes from facial images has received
increasing attention in recent years and many methods have
been put fourth. A detailed survey of such methods can be
found in [11] and, more recently, in [21]. We note that de-
spite our focus here on age group classification rather than
precise age estimation (i.e., age regression), the survey be-
low includes methods designed for either task.

Early methods for age estimation are based on calcu-
lating ratios between different measurements of facial fea-
tures [29]. Once facial features (e.g. eyes, nose, mouth,
chin, etc.) are localized and their sizes and distances mea-
sured, ratios between them are calculated and used for clas-
sifying the face into different age categories according to
hand-crafted rules. More recently, [41] uses a similar ap-
proach to model age progression in subjects under 18 years
old. As those methods require accurate localization of facial
features, a challenging problem by itself, they are unsuit-
able for in-the-wild images which one may expect to find
on social platforms.

On a different line of work are methods that represent
the aging process as a subspace [16] or a manifold [19]. A
drawback of those methods is that they require input im-
ages to be near-frontal and well-aligned. These methods
therefore present experimental results only on constrained
data-sets of near-frontal images (e.g UIUC-IFP-Y [12, 19]
,FG-NET [30] and MORPH [43]). Again, as a consequence,
such methods are ill-suited for unconstrained images.

Different from those described above are methods that
use local features for representing face images. In [55]

Gaussian Mixture Models (GMM) [13] were used to rep-
resent the distribution of facial patches. In [54] GMM were
used again for representing the distribution of local facial
measurements, but robust descriptors were used instead of
pixel patches. Finally, instead of GMM, Hidden-Markov-
Model, super-vectors [40] were used in [56] for represent-
ing face patch distributions.

An alternative to the local image intensity patches are ro-
bust image descriptors: Gabor image descriptors [32] were
used in [15] along with a Fuzzy-LDA classifier which con-
siders a face image as belonging to more than one age
class. In [20] a combination of Biologically-Inspired Fea-
tures (BIF) [44] and various manifold-learning methods
were used for age estimation. Gabor [32] and local binary
patterns (LBP) [1] features were used in [7] along with a
hierarchical age classifier composed of Support Vector Ma-
chines (SVM) [9] to classify the input image to an age-class
followed by a support vector regression [52] to estimate a
precise age.

Finally, [4] proposed improved versions of relevant com-
ponent analysis [3] and locally preserving projections [36].
Those methods are used for distance learning and dimen-
sionality reduction, respectively, with Active Appearance
Models [8] as an image feature.

All of these methods have proven effective on small
and/or constrained benchmarks for age estimation. To our
knowledge, the best performing methods were demon-
strated on the Group Photos benchmark [14]. In [10]
state-of-the-art performance on this benchmark was pre-
sented by employing LBP descriptor variations [53] and a
dropout-SVM classifier. We show our proposed method to
outperform the results they report on the more challenging
Adience benchmark, designed for the same task.

Gender classification. A detailed survey of gender clas-
sification methods can be found in [34] and more recently
in [42]. Here we quickly survey relevant methods.

One of the early methods for gender classification [17]
used a neural network trained on a small set of near-frontal
face images. In [37] the combined 3D structure of the
head (obtained using a laser scanner) and image inten-
sities were used for classifying gender. SVM classifiers
were used by [35], applied directly to image intensities.
Rather than using SVM, [2] used AdaBoost for the same
purpose, here again, applied to image intensities. Finally,
viewpoint-invariant age and gender classification was pre-
sented by [49].

More recently, [51] used the Webers Local texture De-
scriptor [6] for gender recognition, demonstrating near-
perfect performance on the FERET benchmark [39].
In [38], intensity, shape and texture features were used with
mutual information, again obtaining near-perfect results on
the FERET benchmark.

www.openu.ac.il/home/hassner/projects/cnn_agegender
www.openu.ac.il/home/hassner/projects/cnn_agegender


Figure 2. Illustration of our CNN architecture. The network contains three convolutional layers, each followed by a rectified linear
operation and pooling layer. The first two layers also follow normalization using local response normalization [28]. The first Convolutional
Layer contains 96 filters of 7×7 pixels, the second Convolutional Layer contains 256 filters of 5×5 pixels, The third and final Convolutional
Layer contains 384 filters of 3 × 3 pixels. Finally, two fully-connected layers are added, each containing 512 neurons. See Figure 3 for a
detailed schematic view and the text for more information.

Most of the methods discussed above used the FERET
benchmark [39] both to develop the proposed systems and
to evaluate performances. FERET images were taken un-
der highly controlled condition and are therefore much less
challenging than in-the-wild face images. Moreover, the
results obtained on this benchmark suggest that it is satu-
rated and not challenging for modern methods. It is there-
fore difficult to estimate the actual relative benefit of these
techniques. As a consequence, [46] experimented on the
popular Labeled Faces in the Wild (LFW) [25] benchmark,
primarily used for face recognition. Their method is a com-
bination of LBP features with an AdaBoost classifier.

As with age estimation, here too, we focus on the Adi-
ence set which contains images more challenging than those
provided by LFW, reporting performance using a more ro-
bust system, designed to better exploit information from
massive example training sets.

2.2. Deep convolutional neural networks

One of the first applications of convolutional neural net-
works (CNN) is perhaps the LeNet-5 network described
by [31] for optical character recognition. Compared to mod-
ern deep CNN, their network was relatively modest due to
the limited computational resources of the time and the al-
gorithmic challenges of training bigger networks.

Though much potential laid in deeper CNN architectures
(networks with more neuron layers), only recently have
they became prevalent, following the dramatic increase in
both the computational power (due to Graphical Process-
ing Units), the amount of training data readily available on
the Internet, and the development of more effective methods
for training such complex models. One recent and notable
examples is the use of deep CNN for image classification
on the challenging Imagenet benchmark [28]. Deep CNN
have additionally been successfully applied to applications

including human pose estimation [50], face parsing [33],
facial keypoint detection [47], speech recognition [18] and
action classification [27]. To our knowledge, this is the first
report of their application to the tasks of age and gender
classification from unconstrained photos.

3. A CNN for age and gender estimation

Gathering a large, labeled image training set for age and
gender estimation from social image repositories requires
either access to personal information on the subjects ap-
pearing in the images (their birth date and gender), which
is often private, or is tedious and time-consuming to man-
ually label. Data-sets for age and gender estimation from
real-world social images are therefore relatively limited in
size and presently no match in size with the much larger im-
age classification data-sets (e.g. the Imagenet dataset [45]).
Overfitting is common problem when machine learning
based methods are used on such small image collections.
This problem is exacerbated when considering deep convo-
lutional neural networks due to their huge numbers of model
parameters. Care must therefore be taken in order to avoid
overfitting under such circumstances.

3.1. Network architecture

Our proposed network architecture is used throughout
our experiments for both age and gender classification. It is
illustrated in Figure 2. A more detailed, schematic diagram
of the entire network design is additionally provided in Fig-
ure 3. The network comprises of only three convolutional
layers and two fully-connected layers with a small number
of neurons. This, by comparison to the much larger archi-
tectures applied, for example, in [28] and [5]. Our choice
of a smaller network design is motivated both from our de-
sire to reduce the risk of overfitting as well as the nature



Figure 3. Full schematic diagram of our network architecture.
Please see text for more details.

of the problems we are attempting to solve: age classifi-
cation on the Adience set requires distinguishing between
eight classes; gender only two. This, compared to, e.g., the
ten thousand identity classes used to train the network used

for face recognition in [48].
All three color channels are processed directly by the

network. Images are first rescaled to 256 × 256 and a crop
of 227 × 227 is fed to the network. The three subsequent
convolutional layers are then defined as follows.

1. 96 filters of size 3×7×7 pixels are applied to the input
in the first convolutional layer, followed by a rectified
linear operator (ReLU), a max pooling layer taking the
maximal value of 3 × 3 regions with two-pixel strides
and a local response normalization layer [28].

2. The 96 × 28 × 28 output of the previous layer is then
processed by the second convolutional layer, contain-
ing 256 filters of size 96 × 5 × 5 pixels. Again, this
is followed by ReLU, a max pooling layer and a lo-
cal response normalization layer with the same hyper
parameters as before.

3. Finally, the third and last convolutional layer operates
on the 256 × 14 × 14 blob by applying a set of 384
filters of size 256 × 3 × 3 pixels, followed by ReLU
and a max pooling layer.

The following fully connected layers are then defined by:

4. A first fully connected layer that receives the output of
the third convolutional layer and contains 512 neurons,
followed by a ReLU and a dropout layer.

5. A second fully connected layer that receives the 512-
dimensional output of the first fully connected layer
and again contains 512 neurons, followed by a ReLU
and a dropout layer.

6. A third, fully connected layer which maps to the final
classes for age or gender.

Finally, the output of the last fully connected layer is fed
to a soft-max layer that assigns a probability for each class.
The prediction itself is made by taking the class with the
maximal probability for the given test image.

3.2. Testing and training

Initialization. The weights in all layers are initialized with
random values from a zero mean Gaussian with standard
deviation of 0.01. To stress this, we do not use pre-trained
models for initializing the network; the network is trained,
from scratch, without using any data outside of the images
and the labels available by the benchmark. This, again,
should be compared with CNN implementations used for
face recognition, where hundreds of thousands of images
are used for training [48].

Target values for training are represented as sparse, bi-
nary vectors corresponding to the ground truth classes. For
each training image, the target, label vector is in the length



of the number of classes (two for gender, eight for the eight
age classes of the age classification task), containing 1 in
the index of the ground truth and 0 elsewhere.

Network training. Aside from our use of a lean network
architecture, we apply two additional methods to further
limit the risk of overfitting. First we apply dropout learn-
ing [24] (i.e. randomly setting the output value of net-
work neurons to zero). The network includes two dropout
layers with a dropout ratio of 0.5 (50% chance of setting
a neuron’s output value to zero). Second, we use data-
augmentation by taking a random crop of 227× 227 pixels
from the 256 × 256 input image and randomly mirror it in
each forward-backward training pass. This, similarly to the
multiple crop and mirror variations used by [48].

Training itself is performed using stochastic gradient
decent with image batch size of fifty images. The ini-
tial learning rate is e−3, reduced to e−4 after 10K iterations.

Prediction. We experimented with two methods of using
the network in order to produce age and gender predictions
for novel faces:

• Center Crop: Feeding the network with the face im-
age, cropped to 227× 227 around the face center.

• Over-sampling: We extract five 227× 227 pixel crop
regions, four from the corners of the 256 × 256 face
image, and an additional crop region from the center
of the face. The network is presented with all five im-
ages, along with their horizontal reflections. Its final
prediction is taken to be the average prediction value
across all these variations.

We have found that small misalignments in the Adience im-
ages, caused by the many challenges of these images (oc-
clusions, motion blur, etc.) can have a noticeable impact
on the quality of our results. This second, over-sampling
method, is designed to compensate for these small misalign-
ments, bypassing the need for improving alignment quality,
but rather directly feeding the network with multiple trans-
lated versions of the same face.

4. Experiments
Our method is implemented using the Caffe open-source

framework [26]. Training was performed on an Amazon
GPU machine with 1,536 CUDA cores and 4GB of video
memory. Training each network required about four hours,
predicting age or gender on a single image using our net-
work requires about 200ms. Prediction running times can
conceivably be substantially improved by running the net-
work on image batches.

4.1. The Adience benchmark

We test the accuracy of our CNN design using the re-
cently released Adience benchmark [10], designed for age
and gender classification. The Adience set consists of im-
ages automatically uploaded to Flickr from smart-phone de-
vices. Because these images were uploaded without prior
manual filtering, as is typically the case on media web-
pages (e.g., images from the LFW collection [25]) or social
websites (the Group Photos set [14]), viewing conditions in
these images are highly unconstrained, reflecting many of
the real-world challenges of faces appearing in Internet im-
ages. Adience images therefore capture extreme variations
in head pose, lightning conditions quality, and more.

The entire Adience collection includes roughly 26K im-
ages of 2,284 subjects. Table 1 lists the breakdown of
the collection into the different age categories. Testing for
both age or gender classification is performed using a stan-
dard five-fold, subject-exclusive cross-validation protocol,
defined in [10]. We use the in-plane aligned version of
the faces, originally used in [10]. These images are used
rater than newer alignment techniques in order to highlight
the performance gain attributed to the network architecture,
rather than better preprocessing.

We emphasize that the same network architecture is used
for all test folds of the benchmark and in fact, for both gen-
der and age classification tasks. This is performed in order
to ensure the validity of our results across folds, but also to
demonstrate the generality of the network design proposed
here; the same architecture performs well across different,
related problems.

We compare previously reported results to the results
computed by our network. Our results include both meth-
ods for testing: center-crop and over-sampling (Section 3).

4.2. Results

Table 2 and Table 3 presents our results for gender and
age classification respectively. Table 4 further provides a
confusion matrix for our multi-class age classification re-
sults. For age classification, we measure and compare both
the accuracy when the algorithm gives the exact age-group
classification and when the algorithm is off by one adja-
cent age-group (i.e., the subject belongs to the group im-
mediately older or immediately younger than the predicted
group). This follows others who have done so in the past,
and reflects the uncertainty inherent to the task – facial fea-
tures often change very little between oldest faces in one
age class and the youngest faces of the subsequent class.

Both tables compare performance with the methods
described in [10]. Table 2 also provides a comparison
with [23] which used the same gender classification pipeline
of [10] applied to more effective alignment of the faces;
faces in their tests were synthetically modified to appear
facing forward.



Figure 4. Gender misclassifications. Top row: Female subjects mistakenly classified as males. Bottom row: Male subjects mistakenly
classified as females

Figure 5. Age misclassifications. Top row: Older subjects mistakenly classified as younger. Bottom row: Younger subjects mistakenly
classified as older.

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60- Total
Male 745 928 934 734 2308 1294 392 442 8192
Female 682 1234 1360 919 2589 1056 433 427 9411
Both 1427 2162 2294 1653 4897 2350 825 869 19487

Table 1. The AdienceFaces benchmark. Breakdown of the Adi-
enceFaces benchmark into the different Age and Gender classes.

Evidently, the proposed method outperforms the re-
ported state-of-the-art on both tasks with considerable gaps.
Also evident is the contribution of the over-sampling ap-
proach, which provides an additional performance boost
over the original network. This implies that better align-
ment (e.g., frontalization [22, 23]) may provide an addi-
tional boost in performance.

We provide a few examples of both gender and age mis-
classifications in Figures 4 and 5, respectively. These show
that many of the mistakes made by our system are due to ex-
tremely challenging viewing conditions of some of the Adi-
ence benchmark images. Most notable are mistakes caused
by blur or low resolution and occlusions (particularly from
heavy makeup). Gender estimation mistakes also frequently
occur for images of babies or very young children where
obvious gender attributes are not yet visible.

Method Accuracy
Best from [10] 77.8 ± 1.3
Best from [23] 79.3 ± 0.0
Proposed using single crop 85.9 ± 1.4
Proposed using over-sample 86.8 ± 1.4

Table 2. Gender estimation results on the Adience benchmark.
Listed are the mean accuracy ± standard error over all age cate-
gories. Best results are marked in bold.

Method Exact 1-off
Best from [10] 45.1 ± 2.6 79.5 ±1.4
Proposed using single crop 49.5 ± 4.4 84.6 ± 1.7
Proposed using over-sample 50.7 ± 5.1 84.7 ± 2.2

Table 3. Age estimation results on the Adience benchmark.
Listed are the mean accuracy ± standard error over all age cate-
gories. Best results are marked in bold.

5. Conclusions

Though many previous methods have addressed the
problems of age and gender classification, until recently,
much of this work has focused on constrained images taken
in lab settings. Such settings do not adequately reflect ap-
pearance variations common to the real-world images in so-
cial websites and online repositories. Internet images, how-
ever, are not simply more challenging: they are also abun-



0-2 4-6 8-13 15-20 25-32 38-43 48-53 60-
0-2 0.699 0.147 0.028 0.006 0.005 0.008 0.007 0.009
4-6 0.256 0.573 0.166 0.023 0.010 0.011 0.010 0.005
8-13 0.027 0.223 0.552 0.150 0.091 0.068 0.055 0.061
15-20 0.003 0.019 0.081 0.239 0.106 0.055 0.049 0.028
25-32 0.006 0.029 0.138 0.510 0.613 0.461 0.260 0.108
38-43 0.004 0.007 0.023 0.058 0.149 0.293 0.339 0.268
48-53 0.002 0.001 0.004 0.007 0.017 0.055 0.146 0.165
60- 0.001 0.001 0.008 0.007 0.009 0.050 0.134 0.357

Table 4. Age estimation confusion matrix on the Adience
benchmark.

dant. The easy availability of huge image collections pro-
vides modern machine learning based systems with effec-
tively endless training data, though this data is not always
suitably labeled for supervised learning.

Taking example from the related problem of face recog-
nition we explore how well deep CNN perform on these
tasks using Internet data. We provide results with a lean
deep-learning architecture designed to avoid overfitting due
to the limitation of limited labeled data. Our network is
“shallow” compared to some of the recent network archi-
tectures, thereby reducing the number of its parameters and
the chance for overfitting. We further inflate the size of the
training data by artificially adding cropped versions of the
images in our training set. The resulting system was tested
on the Adience benchmark of unfiltered images and shown
to significantly outperform recent state of the art.

Two important conclusions can be made from our results.
First, CNN can be used to provide improved age and gen-
der classification results, even considering the much smaller
size of contemporary unconstrained image sets labeled for
age and gender. Second, the simplicity of our model im-
plies that more elaborate systems using more training data
may well be capable of substantially improving results be-
yond those reported here.
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