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Abstract—Recent large-scale digitization and preservation ef-
forts have made images of original manuscripts, accompanied
by transcripts, commonly available. An important challenge, for
which no practical system exists, is that of aligning transcript
letters to their coordinates in manuscript images. Here we propose
a system that directly matches the image of a historical text with
a synthetic image created from the transcript for the purpose.
This, rather than attempting to recognize individual letters in
the manuscript image using optical character recognition (OCR).
Our method matches the pixels of the two images by employing
a dedicated dense flow mechanism coupled with novel local
image descriptors designed to spatially integrate local patch
similarities. Matching these pixel representations is performed
using a message passing algorithm. The various stages of our
method make it robust with respect to document degradation,
to variations between script styles and to non-linear image
transformations. Robustness, as well as practicality of the system,
are verified by comprehensive empirical experiments.

I. INTRODUCTION

While high-quality images are currently the most effective
way to create digital copies of historical manuscripts, having
a searchable and processable text is often equally important to
scholars. Unfortunately, optical character recognition (OCR) in
historical documents is notoriously difficult, for which reason
transcription is currently performed manually for documents
of significant historical value.

A very common scenario is line-by-line transcription.
This is the case for many of the most valuable collections
recently digitized and made available online. Examples in-
clude the Dead Sea Scrolls (http://www.deadseascrolls.org.il),
some of the Cairo Genizah (http://www.genizah.org), the
Early English Laws collection (http://www.earlyenglishlaws.
ac.uk), Codex Sinaiticus (http://codexsinaiticus.org), the
George Washington Papers (http://rotunda.upress.virginia.edu/
founders/GEWN.html), and much of the Tibetan Buddhist
Canon (http://www.tbrc.org; http://idp.bl.uk). In all these cases,
explicit information of what text is written on each line of each
page of the manuscript is available.

Our goal is to solve a very specific task for which no practi-
cal system currently exists, namely, determining letter-by-letter
mappings between transcription texts and the matching image
patches in digitized copies of scanned manuscripts. We assume
that the text is divided into pages and lines. We also assume
that the problem of line finding in the image is solvable. From
our experience with the Cairo Genizah collection [1], and from
the experience of the larger community, the latter presumption
is reasonable. Lastly, we assume that we have access to a
computer font that is somewhat similar to the script style used

in the original manuscript. For future work on relaxing these
assumptions, please refer to Section VIII.

The solution we propose is a general one in the sense
that we do not try to learn to identify graphemes from the
matching manuscript and text. Instead, we take a “synthesis,
dense-flow, transfer” approach, previously used for single-view
depth-estimation [2] and image segmentation [3]. Specifically,
we suggest a robust “optical-flow” technique to directly match
the historical image with a synthetic image created from the
text. This matching, is performed at the pixel level allowing
transfer of the (known) letters from pixels in the synthetic
image to those in the historical document image.

II. PREVIOUS WORK

The problem of matching text with images of the (printed)
text was discussed in the past in [4], [5], but only a lim-
ited amount of research has been devoted to the issue. A
straightforward approach to alignment is to perform OCR on
the image and then find the best string-match between the
OCR text and the transcription. A word-level recognizer is
another possibility (see, e.g., [6], [7] and more recently [8]).
But OCR for handwritten text, with which we are dealing here,
is notoriously difficult. In [9], [10], and others, the sequence of
word images and the transcript are viewed as time series and
dynamic time warping (DTW) is used to align them. Hidden
Markov models (HMM) have been used in [11], [12], [13],
for example. Geometric models of characters and punctuation
(including such features as character size and inter-character
gaps) have recently been used to reduce segmentation errors
(e.g., for Japanese in [14] and for Chinese in [15]). In contrast
to the above mentioned methods, we employ a rendered image
of the text as the main representation of the transcript, and then
use direct, image-to-image, per-pixel matching techniques.

Next, we summarize some of the techniques that have been
incorporated into our method.

SIFT flow. Given two images of approximately the same
scene, query image IQ and reference image IR, the SIFT
flow method [16] has been demonstrated to be an effective
way for computing the dense, per-pixel flow between them.
Generally speaking, the local properties of each image are
captured by a local, appearance-based descriptor. Let the local
representation at pixel p of one image be f(IQ, p) and similarly
for the second image, f(IR, p′). The function f represents a
feature transform, applied to pixel p (p′). The original SIFT
flow method uses the SIFT descriptor [17], extracted at a
constant scale and orientation (i.e., Dense-SIFT [18]). Here,
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however, we show that this representation may not be ideal
for manuscript images.

The optimization function of SIFT flow seeks to find
correspondences between the query and the reference view;
that is, to obtain for each query pixel p a vector w(p) =
[u(p), v(p)]>, mapping it to a pixel p′ in the reference. A good
set of correspondences is expected to satisfy the following
requirements:

1) Small displacement. There is an underlying assump-
tion, which can be controlled using appropriate pa-
rameters, that the views are similar and therefore
matching a pixel to nearby pixels is preferred. That
is, |u(p)|+ |v(p)| is minimized for all pixels.

2) Smoothness. Adjacent query pixels, p1 and p2, should
be the warping target of adjacent reference pixels p′1
and p′2. Therefore, the values |u(p1) − u(p2)| and
|v(p1)− v(p2)| are minimized for all query pixels.

3) Appearance similarity. For every pixel p, its appear-
ance should resemble the appearance of its matched
reference pixel. That is, for all pixels, ‖f(IQ, p) −
f(IR, w(p))‖1 is minimal.

Each of these three requirements has roots in the optical-
flow and image-matching literature. Requirements 1 and 2
have been imposed by previous methods for optical-flow (see,
e.g., [19]). The SIFT flow work [16] has extended previous
methods in order to allow for the third requirement. The
optimization itself uses the dual-plane representation [20] and
is used to decouple the smoothness constraint for the x and y
components of the flow, as well as the message-passing algo-
rithm presented in [21], which includes the distance transform,
bipartite updates and a mult-grid implementation.

LBP and its variants. Local binary patterns (LBPs) [22],
[23], [24], originally a texture descriptor, have been shown
to be extremely effective for face recognition [25]. Some
variants have also proven useful in a wide range of computer
vision domains, including object localization [26] and action
recognition [27]. The simplest form of LBP is created at a
particular pixel location by thresholding the 3×3 neighborhood
surrounding the pixel with the central pixel’s intensity value,
and treating the subsequent pattern of 8 bits as a binary
number. A histogram of these binary numbers in a predefined
region is then used to encode the appearance of that region.

The Four-Patch LBP [28] employed here is a patch-based
descriptor that has some similarities, with regard to spatial
arrangements, to a variant of LBP called Center-Symmetric
LBP (CSLBP) [29]. In CSLBP, eight intensities around a
central point are sampled. The binary vector encoding the
local appearance at the central point consists of four bits that
contain the comparison of intensities to the intensities on the
opposite side. Another variant, called Multi-block LBP [30],
replaces intensity values in the computation of LBP with the
mean intensity value of image blocks. Despite the similarity
in terms and the usage of local image patches, this method is
quite different from the patch-based LBPs [28] used here.

III. METHOD OVERVIEW

As preprocessing, we employ the line-detection method
described in [1]. This method is based on binarization followed
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Fig. 1. The stages of the proposed dense-flow method. (a) Our input is a
historical manuscript image, along with a line-by-line transcript of the text. (b,
left) Each manuscript line is binarized, horizontally projected and trimmed;
(b, right) the matching transcript line is rendered using an appropriate font to
produce a matching reference image. (c) FPLBP codes [28] are produced for
the two images (shown color coded). (d) Each pixel is represented by a 16-
valued, weighted histogram of the FPLBP codes in its elongated neighborhood.
A SIFT flow [16] variant is then applied to form dense correspondences
between these representations in the two views. (e) The output flow (color
coded) assigns a matching pixel from the rendered image, along with its known
character label, to each pixel in the manuscript line image.

by a horizontal projection and a peak-finding algorithm. Once
lines are found, they are individually trimmed at their left and
right boundaries, as detected through a vertical projection.

Our problem thus reduces to that of aligning a cropped
image of a line of text and its matching transcript. First, we
synthesize a reference image of the transcript text line using
a suitable reference font. The reference text is synthesized
in a manner in which the provenance of every pixel of the
resulting image is kept; that is, we know for every pixel which
is the corresponding letter. As we show in our experiments
(Section VII), the font used for synthesizing these references
need only approximately match the handwriting in the actual
document. This is evident both in the synthetic experiments
(where images of different fonts are matched) and when
applied to real manuscript photos, where modern fonts are
aligned with ancient handwritings.

Our method for representing the cropped line and the
matching generated image and for computing the flow between
these images is illustrated in Fig. 1. First, each image I is
converted to a Four Patch LBP (FPLBP) code image C, where
each pixel is assigned an integer value in the range [0..15]
(Section IV). Next, local histograms of FPLBP codes are
pulled at each image location. Since most of the ambiguity is
in the horizontal direction, these histograms are gathered from
elliptical domains. Lastly, to compute optical flow between two
images, the SIFT flow method [16] is applied by replacing the
dense SIFT with the values of these histograms per pixel.

IV. FOUR-PATCH LBP ENCODING

The LBP descriptor family (e.g., [25], [31], [30]) en-
codes local texture by constructing short binary strings from
the values around each image pixel. The Three-Patch LBP
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Fig. 2. (a) The Four-Patch LBP code. Two patch pairs involved in computing
a single bit value with parameter α = 1 are connected by (red) lines. (b) The
FPLBP code computed for parameters S = 8, w = 3, and α = 1. The
Cij denote the various patches; the first subscript indicates the ring (inner or
outer) and the second denotes their location on the ring, starting from index
0 at twelve o’clock.

(TPLBP) and the Four-Patch LBP [28] take after the Self-
Similarity Descriptor [32] by using these short bit strings to
represent similarity relationships among neighboring patches
of pixels. Both TPLBP and FPLBP have been shown to capture
local image information complementary to the information
reflected by pixel-based descriptors; utilization of patch-based
descriptors along with pixel-based descriptors has been shown
to considerably enhance classification accuracy [33].

Encoding FBLBP is done by considering two rings around
each pixel. Given the radii of the inner and outer rings, S
evenly-distributed patches are sampled along each ring. To
encode a single pixel, all S/2 pairs of opposing patches in
the inner ring are considered, and one compares the similarity
between the opposing inner patches to α-distant patches on the
outer ring (see Fig. 2). Hence, the length of the binary code per
single pixel is S/2 bits. The FBLBP codes are very compact,
typically having only 16 values, while remaining highly de-
scriptive. In [34], these codes were used to encode face images,
and proven to perform almost as well as the significantly more
expensive collections of SIFT [17] descriptors.

V. FLOW COMPUTATION

For each FPLBP image, we compute at each pixel a local
histogram, in a manner reminiscent of the Distribution Fields
representation, recently used for object tracking in [35]. To
account for the added ambiguity in the horizontal direction, the
histograms are pulled using an elliptical domain. Furthermore,
the histograms are weighed such that pixels near the center of
the window contribute more. A 2D Gaussian filter, with sigmas
2.5 (horizontally) and 1 (vertically), is used for this purpose.

To efficiently smooth these dense histograms, we employ
the fast approximation method of [36], which uses integral
images and multiple averaging passes in order to approximate
Gaussian filtering. Here, for each FPLBP value, we create a
binary map and then perform Gaussian smoothing so as to
propagate the values to the nearby histograms. Following this
step, each pixel is represented by a 16-bit vector.

Given two histogram fields as described above, we employ
a modified SIFT flow, based on its original implementa-
tion [16], to compute the dense matches themselves. The dense
SIFT descriptors originally used by SIFT flow are replaced by
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Fig. 3. (a) The histogram of TPLBP values as computed on a set of document
images. (b) The histogram of FPLBP codes, which is much more uniform.

the histogram for each pixel, smoothed as described above; the
code was left otherwise unchanged.

VI. WHY FOUR-PATCH LBP?

The Three-Patch LBP (TPLBP) is a patch-based Local
Binary Pattern descriptor in which a central patch is compared
to a pair of patches. A bit value is set to 1 if the central patch is
more similar to the first patch of the pair. A ring of eight patch
locations is placed around the central patch, and all pairs of
one patch and the patch located two further locations clockwise
are used. The result is an eight bit code or, equivalently, values
in the range [0..255].

Previous contributions have demonstrated that FPLBP is
inferior to TPLBP and LBP in face recognition [28] and
texture recognition [37]. However, our initial experiments have
demonstrated that TPLBP-based flow performs only slightly
better than SIFT flow. (Unsurprisingly, the basic LBP descrip-
tor is even less suitable for this task, since the usage of patches
is crucial for such images.)

Several properties of FPLBP make it suitable for the task
at hand. First it is much more compact than TPLBP and even
LBP. Since the run time of our method is dominated by the run
time of the SIFT flow method, which in turn depends on the
underlying descriptor length, this is a very desirable property
of the FPLBP codes. Second, and more importantly, out of
the range of codes produced by TPLBP (and also LBP), only
a small fraction is common in typical document images. The
underlying reason is that while, in intensity images, there is
little inherent restriction on scene patterns, the local structure
of documents is very restrictive. Thus, for documents, the
simplicity of FPLBP, which essentially compares the variabil-
ity in the local appearance between left/right, top/down, and
both diagonals, is an advantage. Lastly, the compact range of
values ensures that similar patterns are clumped together. Fig. 3
demonstrates the difference, with this regard, between TPLBP
and FPLBP; the histogram of TPLBP codes is much sparser
than the FPLBP counterpart, and hence more efficiently uses
different values to capture different appearances.

VII. EXPERIMENTS

We ran two sets of extensive experiments: synthetic ex-
periments, using computer generated images, and real-data
experiments, using a varied set of historical documents.

For the purpose of the synthetic experiments, we took a
page from A Tale of Two Cities by Charles Dickens. Then



TABLE I. RESULTS OF THE SYNTHETIC EXPERIMENT. FOR EACH
QUERY FONT AND FOR EACH OF THE THREE TESTED METHODS, THE

AVERAGE DISPLACEMENT ERROR WAS COMPUTED. THE TABLE SHOWS
THE MEAN VALUE (±SD) PER METHOD OVER ALL 269 QUERY FONTS.

ALSO SHOWN ARE THE MEDIAN DISPLACEMENT ERROR AND THE
PERCENT OF FONTS ON WHICH EACH METHOD PERFORMS BEST OUT OF

THE THREE METHODS. THE BASELINE METHOD REFERS TO A LINEAR
STRETCHING OR SHRINKING OF THE REFERENCE TEXT TO MATCH THE

DIMENSIONS OF THE TEST TEXT.

Method: Baseline SIFT-flow Proposed
Mean error ± SD 10.21 ± 4.2 8.38 ± 3.8 6.18 ± 3.1
Median error 11.23 7.42 5.27
Percent best error 6% 17% 77%

we created, using the 274 standard fonts installed on our PC,
image documents containing the text, where the location, in
pixels, of each character is known. This large number of fonts
is used in order to test the robustness of our method over a
large number of query-reference font combinations. We scaled
all fonts to the height of 19 pixels and the resulting image was
at a resolution of 1140 × 716 pixels. The average width of a
character was about nine pixels.

As a reference image, we used the document created using
the Times New Roman font. Non-English Graphemes such as
“Webdings”, “Wingdings”, and “Euclid Math” were removed,
and a total of 269 query images were tested. Each image
contained 50 lines that were detected automatically (see Sec-
tion III). For testing purposes, each character was associated
with its center (the mean value of its pixel coordinates).

For each character, we computed the distance of its center
in the reference image, warped by the tested method to the
query image, to its center in the reference image. Because
both reference and test images are synthetic, we have per-
pixel character labels for both images. The centroid of each
character, in each image, can therefore be simply computed
by considering all the pixels that share the same character
label. We note that this error measure would not be zero
even for a perfect mapping since the center of mass of each
character varies depending on the font. Still, it is expected to
be low when the mapping is accurate. The distances are then
aggregated by computing the mean distance per document.

The results are summarized in Table I. Shown are the mean
and standard deviation of the average per-document distances,
as well as the median distance and the percent of query fonts
on which each method gave the best results. The methods
compared are a baseline method, in which the line is stretched
or shrunk linearly between the query and the reference, the
result of using the original SIFT-flow, and the result of the
proposed method. Also tested were an LBP-based method and
a TPBLP-based method, but neither was competitive and so
they are omitted.

For the real-data experiment, we used pages from a wide
variety of manuscripts of various sources and languages,
including Tibetan, English, Greek, and Hebrew. Some results
are presented in Fig. 4, where, for brevity, only one typical
line per document is shown.

VIII. CONCLUSION

The problem of transcript alignment, when formulated
as a pixel mapping problem, has unique characteristics that

challenge optical-flow methods originally designed for con-
ventional photos. Here, we combine three powerful methods
so as to create an effective representation for the purpose
of establishing dense correspondences: SIFT flow provides a
modern optimization framework that is flexible with regard to
the underlying descriptor; the spatial histogram representation
adds smoothness that allows for better matching of uncertain
image parts; Four-Patch LBP codes provide a succinct, self-
similarity based descriptor that is both symmetric and robust
in the face of measurement noise.

Our results show a significant improvement over baseline
methods on a wide variety of synthetic and authentic transcript
and image pairs. Our method forms a strong foundation from
which more elaborate systems can be constructed. One obvious
direction is to use the method in an iterative manner in which,
after each application, letter appearances would be learned and
employed to resolve ambiguities. Note that the identification
of such ambiguities is straightforward given the local nature
of the suggested cost function.

In addition, some of our underlying assumptions can be
relaxed. When transcripts are provided only per paragraph or
per page, one could estimate the number of characters in a
manuscript line based on the line’s length and density, and
use multiple competing hypotheses to find the best match
for the line break. Finally, incorporating both a self-learning
mechanism and a line-splitting mechanism, one can imagine
an elaborate method that would enable searching within an
existing corpus for the text depicted in a historical image.
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