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Abstract The same scene can be depicted by multiple

visual-media. For example, the same event can be cap-

tured by a comic image or a movie frame; the same

object can be represented by a photograph or by a

3D computer graphics model. In order to extract the

visual analogies that are at the heart of cross media

analysis, spatial matching is required. This matching is

commonly achieved by extracting key-points, and scor-

ing multiple, randomly generated mapping hypotheses.

The more consensus a hypothesis can draw, the higher

its score.

In this paper we go beyond the conventional set-

size measure for the quality of a match and present a

more general hypothesis score that attempts to reflect

how likely is each hypothesized transformation to be

the correct one for the matching task at hand. This is

achieved by considering additional, contextual cues for

the relevance of a hypothesized transformation. This

context changes from one matching task to another and

reflects different properties of the match, beyond the

size of a consensus set. We demonstrate that by learning

how to correctly score each hypothesis based on these

features we are able to deal much more robustly with
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Fig. 1 Example application: matching a 3D model (left) to
a photograph (right). The viewpoint of the 3D object was
adjusted to match the recovered viewpoint of the photograph.

the challenges required to allow cross media analysis,

leading to correct matches where conventional methods

fail.

Keywords Object detection · 3D viewpoint estima-
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1 Introduction

Being able to accurately match different representa-

tions of the same visual scene is a key enabling require-

ment in many computer vision and graphics systems

* The final publication is available at springer.com, DOI:
10.1007/s00138-013-0571-4
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(e.g., [1,2]). Matching often takes the form of recovering

the parametric transformation relating these represen-

tations. This can be a homography, aligning different

photos of the same scene, a projection matrix describ-

ing how a 3D shape projects onto a photo, and more.

Solutions to such problems are well known in the

computer vision community. They typically assume that

features are extracted in each representation and then

matched. The parametric transformation is then esti-

mated by solving an overdetermined system of equa-

tions (e.g., by Least Squares). In most cases, however,

many of these feature correspondences are erroneous.

A robust estimation procedure, such as the Random

Sample Consensus (RANSAC) algorithm [3], is there-

fore used to obtain an estimate in the presence of “out-

lying” correspondences.

RANSAC works by randomly selecting a small sub-

set of putative correspondences and using these to pro-

duce a hypothesis of the transformation’s parameters.

The remaining correspondences are then examined to

determine which agree with the transformation. In a

traditional RANSAC implementation, this number, re-

ferred to as the size of the “consensus”, or inlier, set,

is taken as a measure of the quality of the estimate. A

large number of hypotheses are generated and ranked.

The hypothesis with the largest inlier set is selected as

the output transformation.

Although RANSAC has proven highly successful in

matching different images from the same source (e.g.,

when producing panoramic photos [4]), we show here

that it is far less successful when different sources of

visual information are considered. Such cases are par-

ticularly challenging for representation and matching

techniques and so often provide only small percents of

correct putative matches. This, in turn, requires stan-

dard RANSAC implementations to perform what can

easily become unacceptable numbers of iterations [4].

Moreover, in many situations, outliers might be counted

as inliers and the selected transformation would not be

the best transformation among the random hypotheses.

Our key observation in this paper is that by apply-

ing standard RANSAC, without explicitly considering

the underlying problem it is employed to solve, we are

blinding ourselves to important problem-specific clues

for the quality of hypotheses. We show that such clues

may be used to obtain better transformations. Specif-

ically, we consider the following three types of prob-

lem specific information in order to obtain more robust

hypothesis relevancy measures. (i) Inlier-set distribu-

tions. The size of the inlier set and how its members are

spatially distributed. (ii) Appearance similarities.

Similarities measured between the transformed and the

target photos. (iii) Transformation likelihoods. The

likelihood of the recovered transformation and its com-

ponents.

We show that these different measures of similar-

ity may be combined into a single score, reflecting the

relevancy of a hypothesis. In order to optimally com-

bine these measures we suggest using statistical learn-

ing techniques, when training data is available, or do-

main knowledge when it is not. Our results demonstrate

that by substituting the standard “max-inlier” mea-

sure of the quality of a hypothesis, with our hypothesis

relevancy scores, we obtain far better transformations.

This is verified both quantitatively and qualitatively on

different matching tasks. Specifically, we present “pose

estimation” results where photos are matched to Com-

puter Generated images (CGIs) of digital, 3D models

(Fig. 1), as well as affine transformations estimated be-

tween different representations of the same scene (car-

toons or Lego figures matched with video frames and

more).

2 Related work

RANSAC variants. Pose estimation and image align-

ment methods often use RANSAC [3] to find optimal

transformation hypotheses. Over the years many vari-

ants of the original RANSAC procedure have been pro-

posed and we only briefly touch on some related meth-

ods here. For a comprehensive survey we refer the reader

to [5].

RANSAC extensions typically consider the inlier set

alone in order to obtain a measure of the quality of

a hypothesis; different techniques advocating different

ways of extracting hypothesis scores from the inlier

set and its spatial distribution [6,5]. In some cases,

improved performance is obtained by better sampling

strategies [7,8], pre-filtering of the set of correspon-

dences [9,10], and faster computation of the parame-

ters of each hypothesis [11]. Some methods attempt to

tune RANSAC for real-time performance [12,13], while

others focus on the quality of the final model [14,15]

when applied to specific problems. Finally, RANSAC

has also been shown to perform well for non-rigid align-

ment tasks in [16]. A comparative evaluation of some

of these methods can be found in [12].

Recently, [17] proposed image similarity based mea-

sures of a hypothesis quality. Though somewhat related

to our own approach, we consider multiple sources of

information on the quality of hypotheses, and demon-

strate how these may be combined in a manner which

best suites the alignment task at hand.

Here, we propose a general approach which com-

bines multiple measures of the quality of a hypothe-

sis in order to suppress wrong hypotheses which gain
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high numbers of inliers, while promoting low-inlier hy-

potheses which provide acceptable solutions. To this

end, we employ Statistical machine learning. Although

such methods have been used before in conjunction

with RANSAC (e.g.,RANSAC-SVM [18] and, more re-

cently, [19,20]), these have used RANSAC to improve

the quality of the machine learning models required for

subsequent classification, whereas here, we use machine

learning as a means for selecting better RANSAC esti-

mates.

Image to image alignment. Correlation based direct

methods have been proposed as a means of aligning

different visual representation of the same scene, while

overcoming their differing appearances [21]. When the

scenes are non-rigid, or else present different interpre-

tations of the same visual information, correspondence

based methods are often more suitable. Matches es-

tablished between key-points in the two images, pro-

vide a means for estimating the parameters of a de-

sired transformation. Much of the attention of previ-

ous methods has focused on improving the repeatabil-

ity of the key-point detectors [22], the robustness, de-

scriptiveness, and compactness of the local representa-

tions [23], and the quality of the matching [24]. The

work presented here augments these methods by focus-

ing instead on how a particular parameter hypothesis

is evaluated. It can therefore be applied along-side any

of these techniques in order to provide better quality

transformations.

Pose estimation. Numerous methods have been de-

scribed for estimating the 6-degrees of freedom pose of

a camera. Broadly, these can be categorized into two

main groups: methods using image-based models for

the underlying geometry of the object, and methods

employing explicit, 3D representations.

A large number of photos may be used to capture

the appearance of an object from different viewpoints

and thus facilitate pose estimation. This approach has

the advantage that typically it is easier to compare

images of the same modalities rather than photos to

CG images. The downside is the requirement of hav-

ing multiple, often a great deal, of photos to capture

the appearance of the object from all possible viewing

angles [25–27].

Related to our work is the alternative approach of

using explicit 3D information. 3D models have been

exploited in different ways in the past, typically by us-

ing a CG representation of the object. A popular ap-

proach is to compute pose-estimation and segmentation

jointly by using the object’s contour. Some examples

include [28,29]. Although contours often provide accu-

rate information, they are sensitive to occlusions, they

do not provide sufficient information when objects are

smooth or convex, and they may be mislead by back-

ground noise. To improve accuracy, some methods pro-

pose making local features more robust to certain ge-

ometric transformations (e.g., [30]), however these do

not provide solutions to matching between real and syn-

thetic textures.

Texture information on the 3D geometry has di-

rectly been exploited by a number of existing meth-

ods. These form matches between an input photo and

a rendered CGI view of the 3D model acting as a proxy

for the 3D geometry [31–34]. More recently, this ap-

proach has been combined with recognition [35] and

detection [36,37]. These methods use many 3D mod-

els from the same class, employing correspondences be-

tween query features and features from multiple CG

views. All these methods use RANSAC to obtain the

final pose. Here we augment these methods by consid-

ering multiple measures for the quality of each pose

estimate.

3 Preliminaries - RANSAC

The RANSAC algorithm has been applied to many ro-

bust estimation tasks. Here, we consider it specifically

for the purpose of computing the transformation from

a source to a target image, where these images may

be of different media types (e.g., different modalities).

Specifically, an initial, global set G of putative corre-

spondences is formed between key-points in the two

images to be matched. RANSAC then operates by iter-

ating the following two steps: hypothesis generation and
hypothesis verification. In the first step, a set of corre-

spondences S ⊂ G is randomly selected and then used

to estimate a hypothesis – the values for the parame-

ters of the transformation from the source to the target

image. The size of S is typically the smallest possible

size from which a hypothesis may be extracted. For an

Affine transformation relating two images, for example,

three 2D point matches provide six equations for the six

unknown parameters.

Following the hypothesis estimation step, the ob-

tained hypothesis is then evaluated and scored. Here,

the remaining correspondences in G are consulted to

determine the number k of correspondences which sup-

port the current hypothesis: A correspondence is said

to support a hypothesis when applying the parametric

transformation to a source point brings it to within a

pre-determined distance d from its corresponding target

point. The number k, the number of inliers, is tradition-

ally taken as the measure of quality for the hypothesis;

all hypotheses are sorted by k and the one with the
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highest value, the max-inlier iteration, is then used to

produce the output transformation by using all its inly-

ing correspondences to recompute the transformation.

The number of times these two steps are performed

is usually determined by the empirically estimated ra-

tio of the correct vs. incorrect putative correspondences

in G. With fewer correct matches, more iterations are

required in order to ensure a high enough probability

that a subset S, randomly selected, will contain only

correct matches. This number can quickly become un-

reasonable when the percentage of correct matches is

small, as is often the case when matching between im-

ages from different sources.

4 Matching with hypothesis relevancy

Our key observation is that selecting a hypothesis based

solely on the number of inliers is often misleading and is

by no means the only source of information we have for

the quality of a hypothesis. Consider for example Fig. 2.

Here, RANSAC is used to compute the six-degrees of

freedom camera poses which match 2D photos to 3D

models of the same objects (see Sec. 5). The graphs

present RANSAC iterations, sorted by the size of the in-

lier set, k, for each hypothesis. In Fig. 2 (Top), the value

for k, the number of inliers in each iteration, reaches

its maximum value in several different iterations, some

providing a correct hypothesis while others do not. In

Fig. 2 (Bottom), on the other hand, a suitable hypoth-

esis for the camera pose was obtained in an iteration

which did not score the highest number of inliers.

In both these cases a correct hypothesis may possi-

bly be found by fine-tuning the value of d, the threshold

determining when a match in G is an inlier for the hy-

pothesis. Doing so, however, is not trivial: setting this

value too high (a liberal threshold) would produce many

iterations which score the maximal number of inliers (as

in the top example in Fig. 2), whereas setting it too low

(a conservative threshold) may miss inlying correspon-

dences and would therefore be more sensitive to noise

(bottom example in Fig. 2).

Here, instead of relying exclusively on inlier set sizes

we consider additional hypothesis quality features, spe-

cific for the problems being considered. Sec. 4.1 de-

scribes these features while Sec. 4.2 describes how they

may be combined in order to produce an alternative

hypothesis score – the hypothesis relevancy score.
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Fig. 2 RANSAC 2D to 3D matching based on maximum in-
liers alone. A query photo is matched to a 3D CG model of
the same object by recovering the six degrees of freedom cam-
era pose. Top: Several RANSAC hypotheses score the same
number of inliers; some with a suitable pose (blue), others
with a wrong pose (red). Bottom: The RANSAC hypothe-
sis with the maximum number of inliers (red) is not the best
hypothesis (blue).

4.1 Hypothesis relevancy features

We consider the following three types of hypothesis rel-

evancy features for the quality of a hypothesis.

Inlier-set distributions. The number of inliers and

the spatial distribution of these inliers provide impor-

tant clues for the quality of a hypothesis. We there-

fore employ both the number of inliers (the traditional

measure for the quality of a hypothesis) and the inlier

convex-hull size (measured as a percent of the image

size) as two hypothesis relevancy features. We expect

a good hypothesis to include points spread out across

much of the image, whereas a poor hypothesis to in-

volve inliers concentrated in only a small area of the

image. The higher the value of this second feature, the

better the hypothesis is considered.

Appearance similarities. We consider the correspon-

dences formed by matching descriptors extracted at

key-points. These descriptors capture the visual infor-

mation local to each key-point. We evaluate the simi-

larities of these descriptors in each inlier set, seeking a

hypothesis for which the descriptors in the source and
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Fig. 3 Image matching with domain knowledge (Sec.4.2).
Top row are the input source Lego image and the target
photo. Bottom row is the result of applying the recovered
Affine transformation to the source image (left) and overlaid
on the target (right). By applying machine learning, better
suited matches can be obtained (see Sec. 7.2).

target image have similar appearances. Specifically, we

compute for each corresponding pair consistent with the

scored hypotheses (i.e., each inlying correspondence)

the sum of squared differences between its SIFT de-

scriptors, obtaining a vector whose length is the number

of inliers. From this vector of distances we derive five

features, namely, their mean, SD, median, minimum,

and maximum.

Transformation likelihoods. These features depend

on the particular transformation we seek to recover;

the features used for camera pose estimation (Sec. 5)

are different from those used for image-to-image Affine

matching (Sec. 6). In the former case, the features are

based on the difference between the viewpoint angles

of a synthesized view of the 3D model and the photo-

graph. In the latter, they are based on the parameters

of the aligning transformation. We detail these features

at length in Sec. 5 and Sec. 6 respectively.

4.2 Combining quality measures

In the previous section we proposed a number of fea-

tures which may be examined to provide a better pic-

ture of the quality of a hypothesis. The question now

is how to combine these separate features in order to

obtain a single hypothesis relevancy score?

Applying domain knowledge. When domain knowl-

edge is available, indicating for each feature what values

are associated with good hypotheses and which suggest

bad ones, Fisher’s combined probability test [38,39] can

be used to merge the features into a single relevancy

score. Specifically, we convert each feature score into an

empirical p-value by taking its percentile out the val-

ues obtained for the same feature in all other RANSAC

iterations. In other words, since the vast majority of

the hypotheses are wrong, the distribution of the per-

hypothesis score for a given feature closely matches the

distribution under the null hypothesis that the hypoth-

esis is false; the percentile of a given feature provides

an estimate for the significance of its score. Note that

domain knowledge is used here by determining which

end of the distribution (high or low values) is desirable.

Combining multiple scores, the relevancy score for

hypothesis j is then computed by:

χ2
j = −2

R∑
i=1

loge(pi) (1)

Where i ∈ [1..R] is a feature index, with R features used

for the current application. A result of this method,

applied to the task of image-to-image matching, is pre-

sented in Fig. 3. We next explain how these results may

be improved by applying machine learning techniques.

Learning to combine features. When domain knowl-

edge is unavailable or insufficient, we instead use Sta-

tistical machine learning to obtain a weighing of the

features into a single relevancy score. We collect a train-

ing set consisting of image pairs, representing instances

of the matching problem at hand. We obtain ground

truth estimates for the desired transformations linking

the members of each couple. We then use RANSAC to

obtain feature values for all iterations. We compute the

value of each feature i across all training iterations, and

use these to linearly normalize the feature values to the

range of [0..1].

Having the ground truth transformations at our dis-

posal, we attach each iteration with a positive / nega-

tive label of whether it provided an acceptable hypoth-

esis, or not (see Sec. 5 and Sec. 6 for details on this

process for particular matching tasks). We then train

a discriminative classifier on the feature vectors, using

these labels as targets. In all our tests we used the sim-

ple and parameter-free Linear Discriminative Analysis

(LDA) classification algorithm [40]. Once trained, a hy-

pothesis is scored by projecting its feature vector onto

the 1D LDA subspace. Although better performance

may presumably be obtained with more sophisticated

classifiers, we focus in this work on informative features

rather than on optimizing classification engine.

5 3D model matching

We consider both matching of 3D models to photos and

cross-media photo matching. Naturally, the first task is

more involved, and we therefore describe it first. The

adjustments needed to match between cross-media 2D
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photographs will be described in Sec. 6, based on the

more elaborate system.

Given a 3D, CG model m and a photo, Im, of the

same object, taken with a camera whose unknown ex-

ternal parameters are given by some rotation matrix R

and translation vector t, we wish to recover the six de-

grees of freedom of these parameters in the CG model’s

coordinate frame, thus matching the 3D model and the

photograph.

Having m at our disposal allows us to render im-

ages of the model, producing CG image (CGI) views

V m
j . Each view includes, besides its intensities, also the

3D coordinates of the points projected onto each of its

pixels. By establishing a link between a pixel xi in Im

and pixel x′i in V m
j , we obtain the pairs (xi, Xi), were

Xi is the 3D point m’s coordinate frame, projected onto

x′i. These can then be used to estimate the viewpoint

of Im using standard camera calibration methods [4].

Specifically, given pairs (xi, Xi), the matrix R3×3 and

vector t3×1 may be obtained by solving

xi ∼ A[R t]Xi (2)

Where A3×3 is the intrinsic camera matrix, and R is

constrained to be an orthonormal matrix.

For simplicity, we assume that the focal length is

known and set it to 800 in image pixels, that the prin-

ciple point is at the image center, that the pixel’s aspect

ratio is one, and that there is no skew. Our method is

agnostic to the type of camera calibration model that

is used to estimate the pose from point matches and it

is straightforward to relax these assumptions by using

more elaborate camera calibration techniques.

We obtain image to image correspondences by com-

puting standard feature descriptors, here, the SIFT de-

scriptors [41], on Harris-Affine detected points [42]. Each

descriptor in Im is matched to its L2-nearest neigh-

bor in V m
j . Pose can then be recovered by employing

RANSAC as a robust estimator [3]. Though it conceiv-

ably possible to improve the performance of the system

by the use of more robust features (e.g., [43]), or prior

knowledge [44], we focus here on the pose-estimation

process rather than improving the quality of the point

matches.

If multiple CGIs V m
j exist and a sufficient num-

ber of correct matches is established in each of these

views, then this process should yield the same pose es-

timate for all views. In practice, however, as previously

mentioned, the overwhelming presence of many false

matches results in pose estimates that vary greatly be-

tween the different CGIs. We therefore choose the hy-

pothesis which obtained the highest score from amongst

all views as the final, output transformation.

5.1 Learning pose hypothesis relevancy

We next detail how the relevancy of pose hypotheses

can be learned from training data. Here, we assume a

training set of a certain class of 3D CG models and

associated photos of these objects. In Section 7.1 we

show that our system is robust to the selection of these

models, photos and their class. The camera poses for

the photos included in this training set are computed by

manually establishing point correspondences between

the photos and the CGIs.

For every training model m we render CGI views

V m
j , covering the object’s viewing sphere. For each of

its training images, Imk we then estimate the pose auto-

matically using each one of these rendered views, sep-

arately. Each such estimate provides us with (i) a pose

error emjk computed by comparing the hypothesis with

the ground truth pose and (ii) the features characteriz-

ing the quality of the pose estimate. These features are

collected in a vector vmjk (Sec. 4.1), one for each view.

For every CGI view V m
j in the training set, and for

every given photo Imk of the same model m we obtain

an estimate of the pose in Imk . This is then compared

to the (known) ground-truth pose and an error is com-

puted as a function of the angular and translational

difference between the estimated pose and the ground

truth pose. This error serves to compute training la-

bels used to produce the learned, LDA model. The pair

(Imk ,V m
j ) is assigned a label of 1 if the error emjk falls be-

low a predefined threshold and −1 otherwise. In other

words, the positive class is the class of feature vectors

computed for the relevant views.

In our implementation we define emjk based solely on

angular differences. It is measured as the angle between

the principle axes of the known and estimated positions

of the bounding box of m. Let p ∈ P3 be a point on m

(in homogeneous notation), T̂ defined as

T̂ =

[
R̂ t̂

0 1

]
be the estimated extrinsic matrix, and T similarly de-

fined using the ground truth rotation R and translation

t. Assuming a fixed camera matrix, we compute:

p̂ = T̂ T−1p (3)

Points p̂ are then used to produce the estimated bound-

ing box and compute emjk.

The feature vectors vmjk, along with the labels com-

puted based on pose estimation accuracy, are used to

train a discriminative model for selecting relevant views.

The LDA classifier obtained is used to link the fea-

tures extracted from new CGIs of novel models to novel

photos. During the application (test) phase, the feature
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vector v′j is computed as above for each hypothesis in

each CGI view. The LDA classifier is then employed on

these vectors to obtain a numeric score that is expected

to be positive and high if the hypothesis is accurate and

negative and low otherwise. This numeric score is used

to rank the hypotheses and identify the most relevant

one. This is repeated for all views. The highest scor-

ing hypothesis, across all views, is selected as the final,

output hypothesis.

5.2 Specific features for 3D-to-2D matching

Beyond the relevancy features described in Sec. 4.1, we

employ Transformation Likelihood relevancy features

for the particular task of 3D-to-2D matching. To this

end, we consider the correspondences established be-

tween the query photo interest points and interest points

in each rendered CGI view V m
j (Sec. 5). Each such set

of correspondences yields a pose estimate for the query

photo (see Eq. 3). This pose – the position of the query

photo relative to the 3D model – can be compared to the

known, automatically-specified pose of the current ren-

dered view V m
j , and the angle between the two, αm

kj , can

be determined (See illustration in Figure 4). In prac-

tice, αm
kj is computed similarly to emjk (Eq. 3) using the

known extrinsic matrix of CGI view V m
j and the esti-

mated matrix of Imk .

We observe that a large value for the angle αm
kj be-

tween the estimated pose and the reference view V m
j

can be due to an actual large difference in poses. But

this is unlikely, as if this was indeed the case, the ren-

dered view and the query photo will likely appear differ-

ent and so few correspondences, if any, will be accurate.

More likely is that such a large angle resulted from false

correspondences and an erroneous pose estimate. Small

differences, on the other hand, are either the result of a

correct estimate (i.e., the query photo was taken from

a pose close to that of the rendered view), or, again, an

unreliable estimate. Assuming a uniform distribution of

erroneous estimates, however, it is less likely for a small

angle difference to be the result of an error.

As we report in Sec. 7.1, this feature proved to pro-

vide the most influence on the hypothesis relevancy

score computation. We note that an alternative ap-

proach of manually limiting the range of admissible

pose estimates for query Im and rendered reference V m
j

to be smaller than some angle α̂m
kj . Beyond the disad-

vantage of having to specify these values manually, and

possibly manipulating them for different objects and

object classes, this has the additional adverse effect of

imposing a hard, single threshold on all the views. This,

compared to the soft, learned values computed for each

m

kI

m

jV
m

kj

Fig. 4 Photo-to-CGI pose difference. Illustrating the angle
αm
kj between the pose estimate for photo Imk using matches

between its image-features and the CG view’s Vm
j .

object class and weighed against other features to de-

termine more informative hypothesis relevancy scores.

6 Matching cross-media photos

As an additional example of cross-modality matching,

we consider the task of obtaining an Affine transforma-

tion between different media capturing the same visual

scene. As in the pose estimation problem above, the

task here can be particularly challenging when an ex-

act transformation does not exist due to the differing

representations. This is made more challenging by the

representations themselves having different appearance

properties, leading to a reduced probability of forming

correct correspondences.

We treat the 2D-to-2D matching task similarly to

that of matching CGIs and photos (Sec. 5); the lat-

ter viewed as a particular instance of the former. Of

course, unlike the pose estimation task, we have only

a single “view”. As a parametric model we use Affine

transformations, which are powerful enough for our pur-

poses, yet require fewer parameters than full projective

transformations. Each hypothesis stems from three ran-

domly selected correspondences and is scored based on

a learned hypothesis relevancy score, using the features

described in Sec. 4.1.

To obtain suitable Transformation Likelihood fea-

tures, we employ QR-decomposition in order to extract

the translation and scale along the X and Y axes, as well

as the shear value and rotation angle from the affine

transformation matrix. These six parameters are used

as features based on the assumption that the proba-

bilities of the possible Affine transformations are not

uniform; some Affine transformations are more likely

than others given the task at hand.
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Fig. 5 Example query+model pairs. Top row are rendered views of 3D CG models, from arbitrary viewpoints. Bottom are
example query photos collected from the web.

7 Experiments

We present results in multiple cross-media domains.

Quantitative experiments focus on the matching of 3D

views to photographs, since it is easy to define a mean-

ingful error in such cases. Qualitative experiments are

presented for various additional cross media domains,

such as computer games to real-world, Lego models to

movie frames, and comics to motion pictures, in order

to demonstrate the applicability of our method, even in

extreme, cross-media matching tasks.

Our method is implemented in MATLAB, using a

MATLAB OpenGL wrapper for rendering the CG mod-

els in our pose estimation tests. Standard OpenCV rou-

tines were used to compute transformations in both the

2D-3D and the 2D-2D experiments.

7.1 Quantitative experiments

Cars and Buildings benchmarks. We have assem-

bled benchmark data sets and ground truth data suit-

able for evaluating 2D-to-3D matching. Specifically, we

have collected textured, 3D, CG models of car and

building objects, along with images from the web, taken

of those same objects. Our models were obtained from

the Google 3D Warehouse collection and the images

were downloaded from Wikipedia. In total, we have 31

car models with 90 test images and 11 building models

with 30 images, models having one to three query im-

ages each. All models were scaled to unit size. Car mod-

els were further roughly aligned – all facing the same

direction. Finally, we recover the ground-truth camera

pose of all our test images by establishing manual cor-

respondence between the images and CGI views of their

Please see the project webpage for avail-
able resources, including our MATLAB functions
for rendering and computing the transformations.
URL: www.openu.ac.il/home/hassner/projects/ransaclearn

Source: sketchup.google.com/3dwarehouse

associated CG model. Fig. 5 presents some examples of

our models and test images.

With this data set, we define a straightforward leave-

one-out testing protocol, as follows. Given an image,

we estimate the pose of the object in the image, using

the object’s CG model. In addition, all other models,

their images, and ground truth poses are available for

training; the only excluded information is, of course,

the ground truth pose of the input image, as well as all

other query photos of the same object. Pose estimate

precision is measured following [37] by considering both

the translational εt and angular εr errors. Specifically,

εt is the difference between the center of the ground

truth model and the center of the model in the esti-

mated position, εr is the angle between the principle

axes of the real and estimated bounding boxes [37]. We

use Eq. 3 to obtain the estimated position of the ob-

ject’s bounding box.

Comparison with existing work. We compare our

method to the RANSAC-based method of [37]. We note

that better pose estimation accuracy may conceivably

be obtained by more recent systems (e.g., [45–47]). We

build on the system proposed in [37], however, as it al-

lows us to focus on the contribution of our modified

RANSAC routine, rather than those of other compo-

nents of a 3D, pose estimation system (e.g., descriptor

design and matching, etc.)

Similarly to [37], for every model m we produce 324

CG views V m
j : 108 views uniformly covering the up-

per hemisphere of the object at three radii. Descriptors

are extracted using the Harris-Affine interest point de-

tector implementation of [42]. SIFT descriptors were

computed using the code made available by [48]. Given

a descriptor set extracted from a novel photo we match

each descriptor against those of the current CGI view

seeking its nearest neighbor in Euclidean distance.

Pose is then estimated using 2, 000 RANSAC itera-

tions using these putative correspondences. In training,

hypotheses which produce angular errors of 7 degrees or
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less are considered positive samples, all others are con-

sidered negative samples. When LDA is applied, the

hypothesis with the highest LDA projection value is se-

lected, and its pose estimate is then returned as our

method’s output.

Cars and Buildings benchmark results. Table 1

compare the performance of the following methods on

the Cars and Buildings benchmarks:

1. Random view + RANSAC. A CGI view V m
j is

selected randomly and its matches are then used to

estimate the pose using standard RANSAC (Sec. 3).

2. Best view + RANSAC. The view selected for

pose estimation is the one with the most nearest

neighbor matches for the descriptors in the query

photo. Once selected, pose is estimated as before.

3. Estimation based on [37]. This method is used

as a baseline to our own, in order to evaluate the

effect of the modified RANSAC procedure. In order

to remain true to their implementation, however,

we perform testing using all our training models,

including the model of the object appearing in the

test photo.

4. Our learned hypothesis relevancy method. The

method described in Sec. 5.

5. Robustness to training. Same as 4, but here car

estimates were produced using a statistical model

learned from the Buildings set and vice-versa.

Table 1 summarizes results for both Cars and Build-

ings sets, listing angle and position median and mean ±
standard error (SE). The angular error of our method

outperforms other variations by significant margins. Po-

sition errors, on the other hand, vary little from one

method to the other, all doing well. This is unsurpris-

ing considering that translation can be estimated, to

a large degree, based on a crude key-point localization

within an object’s boundaries, which all methods do

well. Figure 6 demonstrates this point; the type of er-

rors obtained in the rotational model by the method

of [37] have little effect on the location of the object.

It is interesting to consider the weights learned for

the different features involved in computing the hypoth-

esis relevancy scores, presented in Figure 7. Apparently,

the most influential feature is the Photo-to-CGI pose

difference (Sec. 5.2). The traditional feature used for

selecting hypotheses – the inlier set size – is second

in its influence on the hypothesis scores, but with a

substantially smaller contribution. This implies that us-

ing standard RANSAC, without learned domain knowl-

edge, may lead to sub-optimal accuracy. The same is

evident by comparing the contribution of the inlier set

size feature to other features – particularly the maxi-

mum similarity of inlier descriptors and the size of the

convex hull – which appear to be nearly as important.

To evaluate the generality of our learned LDA clas-

sifiers, we performed an additional experiment (Table 1,

row 5). Here, an LDA classifier trained on our Cars set

was used to compute hypothesis scores when estimat-

ing the poses of objects from the Buildings set, and

vice versa. For the car objects, the drop in performance

was minor, with median and average angular errors in-

creasing only slightly. For the building objects, however,

results actually improved. By offering more examples

in more variable viewing positions, the Cars set pro-

vides a richer and more effective training set, thereby

improving accuracy on the Buildings set. Where tradi-

tional techniques may be unable to learn from exam-

ples having fundamentally different appearances, here,

by focusing on the properties of the transformations,

rather than the object appearances, we can utilize train-

ing across object classes.

Stability of results. We analyze the stability of our

approach by measuring pose estimation accuracy with

different numbers of RANSAC iterations. Figure 8 plots

the median angular errors obtained for varying num-

bers of iterations, using our full approach – the learned

hypothesis relevancy method (row 4 in Table 1). Evi-

dently, pose errors quickly drop and remain stable from

around 700 iterations onwards. These should be consid-

ered along with the cross-dataset training results (row

5 in Table 1), as testament to the robustness of our

approach.

The limitations of our methods are presented in Fig-

ure 9. The method is challenged by similarity among

completely different views or by lack of details in the

given photo. While our criterion for hypothesis selec-

tion improves performance, the problem of multiple hy-

potheses testing may still lead to the identification of

wrong transformations.

Car detection by matching 3D models. We eval-

uate our method on the cars in the image set from [49]

testing for detection accuracy using the Pascal VOC07

evaluation protocol [50] and 8-class, pose classification

accuracy. We use the same estimated 3D car model

computed by [25] as our reference model m, and com-

pare to their detection and pose classification results.

We have successfully detected 114 cars out of 160

(71.25%) compared to the 61.25% of [25]. Fig. 10 com-

pares the diagonal of the confusion matrix of the two

methods relative to the ground truth labeling of the

eight pose labels. Detection based on matching with

hypothesis relevancy outperformed [25] on all but one

class. We note that better performance on this bench-



10 Tal Hassner et al.

Cars Buildings
Angular Error Position Error Angular Error Pos. Error

Method Median Mean ± SE Median Mean ± SE Median Mean ± SE Median Mean ± SE
1. Rnd. view + RANSAC 117.9 116.6 ± 5.49 1.73 1.86 ± 0.29 91.04 90.56 ± 7.53 0.89 1.36 ± 0.31
2. Best view + RANSAC 93.09 96.32 ± 5.30 1.19 2.01 ± 0.53 77.53 79.92 ± 8.43 0.84 1.30 ± 0.27
3. Liebelt et al. [37] 66.47 77.52 ± 5.74 0.58 0.83 ± 0.11 48.40 58.19 ± 7.67 0.55 0.81 ± 0.19
4. Hyp. rel. score 18.55 42.01 ± 5.14 0.10 0.94 ± 0.32 22.26 39.78 ± 7.41 0.08 0.66 ± 0.28
5. Hyp. rel., cross-class 19.10 45.68 ± 5.49 0.10 1.02 ± 0.33 21.66 36.30 ± 6.81 0.11 0.66 ± 0.28

Table 1 Precision statistics. Median and mean (± standard error of the means, SE) angular and position errors on the
Cars and Buildings data sets for all tested methods. Lower values are better.

Fig. 6 Visually comparing pose estimates of our method to [37]. Top row is the input photo, middle is [37] and bottom our
results. Note that the churches in the second column were moved in the figure to allow a more compact presentation; the
translation component is accurate for both methods.
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Fig. 7 Learned weights for features used to compute our
hypothesis relevancy scores. See text for more details.

mark have recently acheived by [26]. Their method,

however, uses a far more accurate reference 3D model

which was unavailable to us for comparison.

7.2 Qualitative experiments

We performed additional cross media domain experi-

ments, focusing on 2D image to image matching tasks.

Given an image pair, we seek the Affine transformation

linking the two images. Here, we again extract SIFT

key-points, this time, however, we use every fifth pixel
along edges detected by the Canny edge detector as

key-points. This, in order to obtain a sufficient number

of key-points even in low contrast images (e.g., comics

in Fig. 11(a)). Training in all these examples is per-

formed in a leave-one-out manner, similar to our 2D-

to-3D matching experiments (Sec. 7.1).

We present results of matching comics to frames

from the motion picture “300” in Fig. 11(a), match-

ing of Lego models to photos of the same scenes in

Fig. 11(b), and screen-shots of the video game MineCraft

to photos of similar figures in Fig. 11(a). In all cases

training was performed using similar example data (e.g.,

pairs of comics and frames from “300” were used to

train an LDA model for matching other comics to frames

taken from the same motion picture). No additional pa-

rameter tuning was performed, and we used the same

features in all these experiments (Sec. 4.1).

Source: www.minecraft.net
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Fig. 8 Stability tests on the Cars benchmark. Median an-
gular errors on the Cars benchmark measured for our full
approach (row 4 in Table 1) with increasing numbers of
RANSAC iterations.

Fig. 9 Examples of failed estimations. These are typically
cases where the object appears similar from different views
(top), has few features (middle), or are caused by poor ran-
dom hypothesis selection by RANSAC (bottom).

We compare hypothesis relevancy to the RANSAC-

based, Gold-Standard algorithm for aligning images [4],

in both cases using the same key-points and descriptors.

Here, again, more elaborate alignment schemes exist

(e.g., the recent work of [51]), but our goal is to evaluate

the performance of the modified RANSAC, rather than

fine-tune an alignment pipeline.

As can be seen, in some cases, (e.g., Fig. 11(a) and

(c), last rows) hypothesis relevancy and max-inliers both

obtain similar transformations. In most cases, however,

using hypothesis relevancy instead of max-inliers greatly

improves the quality of the obtained alignment. A dif-

ficult example where both methods failed is presented

in the last row of Fig. 11(b).
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Fig. 10 Pose classification. Comparing our confusion matrix
diagonal values to [25] on the benchmark in [49]. Higher values
are better. ∗ We show results also for [26] though we note that
they used a substantially better 3D model, which was not
available to us in our experiments. These results are therefore
not directly comparable to our own.

8 Conclusions

Matching across different modalities is a challenging

task that results in a potentially large number of false

matches. Furthermore, it is not easy to distinguish be-

tween true and false matches even when considering

consensus among multiple matches. Conventional tools

such as RANSAC often fail to identify sets of matches

that support a correct hypothesis from sets that sup-

port false hypotheses that have equally high or even

better scores due to a nasty combination of inaccurate

matches and multiple hypothesis testing.

In this work we propose to augment the RANSAC

procedure by considering multiple sources of informa-

tion, combined using a learning based relevancy score.

This has the effect of making the RANSAC procedure

far more robust. Overall, the simplicity of our method

makes the proposed solution practical and efficient, and

quantitative results on three benchmarks, as well as a

variety of qualitative results, demonstrate its effective-

ness. In addition, multiple qualitative experiments in

various cross-media applications demonstrate its util-

ity.
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