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Abstract. Action Recognition in videos is an active research field that
is fueled by an acute need, spanning several application domains. Still,
existing systems fall short of the applications’ needs in real-world scenar-
ios, where the quality of the video is less than optimal and the viewpoint
is uncontrolled and often not static. In this paper, we consider the key
elements of motion encoding and focus on capturing local changes in mo-
tion directions. In addition, we decouple image edges from motion edges
using a suppression mechanism, and compensate for global camera mo-
tion by using an especially fitted registration scheme. Combined with a
standard bag-of-words technique, our methods achieves state-of-the-art
performance in the most recent and challenging benchmarks.

1 Introduction

Among all visual tasks that are virtually effortless for humans, Action Recogni-
tion remains a clear challenge for Computer Vision. As real-world object recogni-
tion, face identification, image similarity and visual navigation systems demon-
strate improved capabilities and become useful in many practical scenarios, the
performance of video-based Action Recognition systems seem too fragile to leave
the research lab.

Much of the advancement in the other Computer Vision domains has been
attributed to the emergence of better image descriptors, the better use of sta-
tistical learning methods, and the advent of large and realistic benchmarks that
help push performance boundaries. In Action Recognition too, as detailed in Sec-
tion 2, many contributions have been made in each of these directions. Paradoxi-
cally, and somewhat in contrast to other visual perception tasks, new benchmarks
seem to play a disillusioning role and clearly demonstrate the shortcomings of
current Action Recognition techniques. This is especially true for inferring hu-
man action in unconstrained videos. In such videos, actors’ identity and clothes,
scene background and illumination, camera viewpoint and motion, and image
resolution and quality all change between the various clips of the same action,
leading to a significant drop in performance.

An emerging trend due to the difficulty of recognizing action in videos is the
use of 3D sensors for Action Recognition. Such recognition systems heavily rely
on identifying the 3D pose of the various body parts at each frame. While such
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approaches show clear value, the 3D sensors and constrained imaging conditions
limit their successful use beyond entertainment and human-machine interactions.
Specifically, such systems cannot index or annotate conventional video data sets,
monitor surveillance footage, or identify motion from a far range.

In this work we rethink the description of actions and propose a comprehen-
sive solution!. Key to our method is the focus on encoding motion interchanges,
i.e., the creation of a signature that captures at every time point and at every
image location both the preceding motion flow and the next motion element.
This is done using a patch-based approach (a.k.a self-similarity) and local pat-
tern encoding. To decouple static image edges from motion edges, we incorporate
a unique suppression mechanism, and to overcome camera motion, we employ a
motion compensation mechanism that is tailor-made to our descriptors. A bag-
of-words approach is then used to pool this information from the entire video
clip, followed, when appropriate, by a learned metric technique that mixes and
reweighs the various features.

2 Related Work

Action Recognition is a central theme in Computer Vision and existing work is
only briefly covered here. For more comprehensive surveys we refer to [1, 2].

Over the years Action Recognition methods have been designed to employ
information ranging from high-level shape representations, to low-level appear-
ance and motion cues. Several early attempts relying on high-level information,
include explicit models of human bodies in motion [3], silhouettes [4] or 3D
volumes [5]. A recent paper by [6], turned back to these early attempts and
constructed a bank of action templates used to create a high-dimensional repre-
sentation for effective recognition in several challenging Action Recognition data
sets. In recent years, however, three general low-level representation schemes
have been central in Action Recognition systems. These are the local descriptor,
optic flow, and dynamic-texture based representations.

Local descriptors. These methods begin by seeking coordinates of space-time
interest points (STIP) [7]. The local information around each such point is then
represented using one of several existing or adapted feature point descriptors. A
video is then represented using, for example, a bag-of-words representation [8].
Some recent examples of such methods include [9-11]. This approach has proven
effective on a number of recent, challenging data sets (e.g., [12]), yet one of its
chief drawbacks is the reliance on a suitable number of STIP detections in each
video; videos supplying too few (e.g., videos of subtle motion) may not provide
enough information for recognition. Videos with too much motion (e.g., back-
ground, textured motion such as waves in a swimming pool) may drown any
informative cues for recognition.

! The source code for our method and the scripts used to run it on the various bench-
marks are available at: http://www.openu.ac.il/home/hassner/projects/MIP/
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Optical-flow based methods. These methods first estimate the optical-flow
between successive frames [13,14], sub-volumes of the whole video [15], or sur-
rounding the central motion [16,17]. Optical-flow, filtered or otherwise, provides
a computationally efficient means of capturing the local dynamics in the scene.
Aggregated either locally (e.g, [16]) or for whole video volumes as in [13] such
information has been shown to provide strong cues to Action Recognition. As we
later discuss (Section 4) optical-flow based methods commit early-on to a par-
ticular motion estimate at each pixel. Unreliable or wrong flow estimates would
therefore provide misleading information to any subsequent processing.

Dynamic-texture representations. These methods evolved from techniques
originally designed for recognizing textures in 2D images, by extending them to
time-varying “dynamic textures” (e.g., [18] and recently also [19]). The Local
Binary Patterns (LBP) [20], for example, use short binary strings to encode the
micro-texture centered around each pixel. A whole 2D image is represented by
the frequencies of these binary strings. In [18,21] the LBP descriptor was ex-
tended to 3D video data and successfully applied to facial expression recognition
tasks.

Another LBP extension to videos, related to our own work here, is the Local
Trinary Patterns (LTP) descriptor of [22]. To compute a pixel’s LTP code, the
2D patch centered on it is compared with 2D patches uniformly distributed on
two circles, both centered on its spatial coordinates: one in the previous frame,
and one in the succeeding frame. Three values are used to represent whether the
central patch is more similar to one in the proceeding frame, the succeeding frame
or neither one. A string of such values represents the similarities computed for
the central patch with the patches lying on its two corresponding circles. A video
is partitioned into a regular grid of non-overlapping cells and the frequencies of
the LTP codes in each cell are then concatenated to represent the entire video.

3 Overview of the Method

Our method encodes a video clip as a single vector. While most real-world sce-
narios require the detection and recognition of human action in an unsegmented
video, we adhere to the conventions of the community and assume known starting
and end frames. Note that since our encoding, processing and pooling are all lo-
cal, our system can be applied to unsegmented videos with few re-computations.

Given an input video, we encode every pixel on every frame by eight strings
of eight trinary digits each. Each digit compares the compatibility of two motions
with the local patch similarity pattern: one motion in a specific direction from
the previous frame to the current frame, and one motion in a different direction
from the current frame to the next one. A value of —1 indicates that the former
motion is more likely, 1 indicates that the latter is more likely. A value of 0
indicates that both are compatible in approximately the same degree.
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Fig.1. (a) Our encoding is based on comparing two SSD scores computed between
three patches from three consecutive frames. Relative to the location of the patch in
the current frame, the location of the patch in the previous (next) frame is said to be in
direction 4 (j); The angle between directions ¢ and j is denoted a. (b) Hlustrating the
different motion patterns captured by different i and j values. Blue arrows represent
motion from a patch in position ¢ in the previous frame; red for the motion to the patch
j in the next frame. Shaded diagonal strips indicate same « values.

Going in multiple directions, we provide a complete characterization of the
change from one motion to the next, hence we call our representations Motion
Interchange Patterns (MIP). We provide details of our encoding in Sec. 4.

Some motion patterns are implausible, i.e., it should not happen that motion
i from the previous frame to the current one is more likely than motion j from
the current frame to the next one, and at the same time, using other patch
comparison, motion j is more likely than motion i. However, since inferring
motion locally from patch similarities is inherently ambiguous, this situation is
common. We analyze this scenario and suggest a remedy in Section 5.

Another source of ambiguity stems from the camera motion which introduces
image motion even in motionless parts of the scene. Recent Action Recognition
benchmarks, which we aim to address, have significant amounts of such motion.
Attempts to employ independent video stabilization showed only little improve-
ment for our descriptors. Instead, we propose in Section 6 finding the alignment
parameters that maximize the number of zero encoded pixels in the video.

Finally, in Section 7, we describe the pipeline we use in order to pool pixel-
wise signatures from the entire video clip and represent the clip as a single vec-
tor. Specifically, we combine conventional bag-of-words techniques with suitable
learning techniques to obtain discriminative action models.

4 Basic Encoding

Attempts to encode motion by first computing flow and then, at a separate
stage, analyzing the motion seem intuitively appealing; in practice, however,
they suffer greatly from an early commitment to an estimated flow. This situation
resembles the one in object recognition, where gradient based methods and other
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“implicit-coding” techniques currently dominate, despite the appeal of methods
that explicitly compute edges as a preliminary step.

The sum of squared differences (SSD) patch-comparison operator has long
been used in estimating motion. The self-similarity technique [23] has demon-
strated its usage in encoding both structure and motion, while being appearance
invariant. Combining this line of reasoning with the effectiveness of LBP [20] in
encoding texture for recognition tasks, LTP [22], and also patch-LBP [24, 25],
use SSDs as a basic building block for defining local patterns. Here, we general-
ize this idea and fully encode both motion and motion interchange. In addition,
we add layers of processing, which overcome the inherent limitations of earlier
encoding schemes.

Comparing two differently-located patches in a pair of nearby frames (obtain-
ing one SSD score) provides a datum that is unscaled and inherently ambiguous.
Adding a third patch in order to obtain another SSD score enables the compar-
ison of two similarly scaled data points. Our encoding scheme is therefore based
on three patches as depicted in Fig. 1(a).

Encoding is performed for every pixel in every triplet of frames (i.e., previous,
current, and next frame). We consider 3 x 3 pixel patches?, where the location
of the center of the patch in the current frame is denoted (0,0), and eight pos-
sible locations in each of the previous and the next frames are denoted i and j
(respectively) and numbered from 0 to 7. The eight index values correspond to
center pixel locations of (—4,0), (—3,3), (0,4), (3,3), (4,0), (3,-3), (0,—4), and
(—3,—3). The angle between ¢ and j is denoted as o = 0°,45°, ..., 315°.

We consider all combinations of ¢ and j. Each pixel p = (z,y, t), in the current
frame ¢, is therefore represented by a 64-trit (trinary digit) code denoted by S(p).
Each trit S; ;(p) corresponds to a different combination of ¢ and j patch location
indices in the previous and next frames (respectively). We consider gray value
images (discarding color information), in which the intensities are scaled between
0 and 255, and use a threshold of § = 1296. So, for example, a 3 gray-value
difference matrix of a constant value 12 is on the verge of being discernible from
a zero difference matrix. Denote by SSD1 (SSD2) the sum of squared differences
between the patch in the previous (next) frame and the patch in the current
frame. Each trit, S; ;(p), is computed as follows:

14if SSD1—-6>S5SD2
Sii(p) = 0 if |SSD2—-SSD1|<¥0 (1)
-1 4if SSD1<SSD2-40

In a complex enough scene a low SSD value can help track the motion of
a patch. For example, a low value of SSD1, is interpreted as indicating that a
patch moved from location 7 in the previous frame to the central location in the
middle frame. Therefore, for specific values of ¢ and j we can infer whether the
motion from location 7 to the central location is more likely than the subsequent
motion from the central location to location j.

2 Since we did not optimize for the encoding parameters, and to improve readability,
we provide the explicit values of the various parameters whenever possible.
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Fig. 2. Suppressing codes on static edges: A value of So6(p) = —1 resulting from a
static, horizontal edge in the scene. In this case, Se,0(p) = 1. See text for more details.

Taken for all values of ¢ and j, MIP compare all eight motions to the eight
subsequent motions, obtaining a comprehensive characterization of the change
in motion at each video pixel. This is obtained while refraining from deciding on
the local motion between every two frames.

The 64 different motion combinations are illustrated in Fig. 1(b). For com-
putational reasons they are stratified into 8 channels, each corresponding to a
different value of a. In various stages of our pipeline, each channel is processed
separately, considering each time only the relevant substring of 8 trits.

There is a number of significant differences between our method and LTP [22],
however, at the encoding level they both share the use of three patches and two
SSDs. Comparing the two methods, we note that LTP is restricted to the single
channel of @ = 0 (the case of i = j in Fig. 1(b)). Therefore, each LTP trit votes
for motion in one of two opposite directions. MIP votes separately for motions
from the previous frame and motions to the next frame by considering 8 j’s for
each location i and vice versa. MIP therefore encodes local changes in motion
in addition to the motion itself. As can be seen in our experiments, despite
the success of LTP in encoding motion, its limited motion characterization is
outperformed by the complete characterization employed by our method.

5 Distinguishing between Motion and Image Edges

It is instructional to consider the different trinary codes assigned for different
motions and different choices of i and j. The value Sp¢(p) = 0, for example,
would be obtained when a patch changed its position from frame ¢t — 1 to ¢ by
moving horizontally to the right and then from frame ¢ to frame ¢ 4 1 vertically
downwards (Fig. 1(a,b)). Of course, a zero value will also be assigned in homo-
geneous regions where no motion can be detected. A value Sp6(p) = —1, on
the other hand, would be produced by a horizontal motion to the right followed
by an unknown motion which is not vertically downwards. The value —1 could,
however, alternatively indicate the presence of a static scene edge (see Fig. 2).
These examples raise the obvious question of how to distinguish codes produced
by meaningful motion from those caused by the scene structure?

To answer this question, assume that the value Sy ¢(p) = —1 was obtained
due to an edge in the scene. In other words, the patch in the previous frame,
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Fig. 3. The effects of motion stabilization (Sec. 6) and suppression (Sec. 5), illustrated
by color coding pixels by their 8-trit values. Top: stable camera scene; Bottom: moving
camera. (a) Raw codes: In the top row, non-zero codes are produced along static
edges in the scene despite there being no motion. In the bottom, codes are produced
throughout the image due to both, image edges and camera motion. (b) Stabilization:
Once the codes are stabilized, the image in the bottom shows codes along image edges.
This step has no effect on the top image. (¢) Suppression: Following suppression,
non-zero codes concentrate almost entirely on the foreground action.

denoted Py, resembles the current frame’s patch C' more closely than the patch
in the next frame Ng. Now switch the locations of the patches in the previous
and next frames, comparing C' to Ps and Ny to compute Sg0(p). If no motion
occurred, than P will now contain the same intensities Ng previously did, and
vice versa. Consequently, the value of Sgo(p) will be 1.

The reasoning above suggests the following means for distinguishing between
motion and still scene-edges: Once all 64 trits are computed, for each ¢ and
J, if sign(S; ;(p)) # sign(S;.(p)) and both are non-zero, then suppress both
trits by assigning S; ;(p) = Sj.(p) = 0. This, to indicate a high likelihood of
no-motion. Following this suppression, homogeneous regions are also apparent:
these are simply pixels with zero in all 64 trits. Code suppression is demonstrated
in Fig. 3(c).

6 Overcoming Camera Motion

Camera motion is one of the most challenging aspects of performing Action
Recognition “in-the-wild”. We seek to compensate for any apparent motion
caused by camera motion in a way that is compatible with- and suitable for-
our encoding scheme. The compensation mechanism works by performing the
following steps for each of the eight channels separately: (1) basic MIP encod-
ing (Sections 4 and 5) (2) recovering image translation from the next frame to
the previous frame through the current frame, using entire images; (3) a sec-
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ond MIP encoding using the warped next and previous frames (4) estimating an
affine transformation on zero-coded pixels from steps 1 and 3; and (5) computing
the final MIP codes on the warped frames.

In the second step, global image translations between the previous frame
and the current frame, and between the current frame and the next frame, are
computed using the direct method of [26]. Then, the next frame is warped to the
previous frame using the recovered motion vectors. This step does not depend
on the value of o and is common to all channels.

For each channel (fixed « value), we encode the obtained warped frames using
our encoding scheme (including the suppression step of Section 5) and consider
the zero encoded pixels of that channel, both before, and after warping by global
translation. These pixels are part of image regions in which for the threshold 8
used, no discernible motion was detected, and are therefore suitable candidates
for background pixels.

We then compute an affine transformation between the current frame and the
previous frame, and an affine transformation between the current frame and the
next frame, considering only the zero encoded pixels defined above. The direct
method of [26] is again used, this time with six degrees of freedom. Lastly, the
next frame is warped to the previous frame and the final encoding is computed.
Our stabilization is demonstrated in Fig. 3(b), bottom row.

7 Computing Similarity

Following the suppression step and the camera motion compensation step, we are
left with 8 channel maps, where each pixel in the video is encoded by one 8-trit
string per channel. Following the efficient representation presented in [22], we
treat the positive and negative parts of the strings separately obtaining 2 UINTS8
per pixel, for each of the 8 channels. These 16 values represent the complete
motion interchange pattern for that pixel. For each channel, the frequencies of
these MIP codes are collected in small 16 x 16 patches in the image to create 512-
dimensional code words. Unlike [22], who represent the video by concatenating
cells’ histograms, we use instead a bag-of-words approach and by that we avoid
the disadvantages of a grid (e.g., it not being translation invariant).

To this end, we employ k-means clustering on the small patches’ histograms
obtained for the training images. This is done separately per-channel, and we set
each dictionary’s size to be k = 5000 following [12]. Each train or test video clip
is then represented by eight histograms (one per channel), in which each local
string is assigned to the closest single dictionary element.

Each such histogram is normalized to have a sum of one, and then the square
root is taken from each histogram element. In this manner, the Lo distance
between the processed histograms becomes the Hellinger distance between ap-
proximated distributions [24]. Needless to say, the design choices of our pooling
scheme described here favor simplicity over performance, and the Computer Vi-
sion community has come up with more elaborate alternatives to each of these
steps.
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From each video clip, we thus obtain eight vectors of length 5,000, which are
denoted below as u,. Depending on the actual task to be performed, these are
further processed by employing a pipeline that combines existing learning algo-
rithms. These algorithms are chosen with accordance to the available training
information and the required output of each task, as described next.

Action labeling. For multi-class Action Recognition, i.e., the standard task
where during training multiple video clips per action label are provided, and
during testing the task is to label each test sample, we use a one-vs-all linear
Support Vector Machine (SVM). The linear SVM is learned with a parameter
value of C = 1 on vectors u, each such u is a concatenation of the 8 wu, of all
channels. For N labels there are N binary classifiers obtained in the one-vs-
all scheme. Given a test sample, classification is obtained by choosing the class
which classifies the test datum with greatest margin.

Action pair-matching. We additionally perform experiments in a pair-matching
(“same/not-same”) setup, which has recently gained popularity following the
success of the Labeled Faces in the Wild benchmark [27]. Here, the input is
given in the form of pairs of video clips, each labeled as portraying the same
action or dissimilar (not-same) actions. The advantages of this setup include the
fact that one does not have to explicitly define labels for actions and that the
system trained in this manner can potentially identify new actions that were not
seen during training.

In the training step we are given pairs of video clips, each with one binary
label. We first encode each video clip as eight vectors u, of length 5,000 by
employing the bag-of-words pipeline describe above. Then, using the training
data, we learn eight transformations T, by employing the CSML algorithm [28].

The CSML algorithm takes as input n pairs of vectors (v;,v}), i = 1..n, and
the corresponding same, [; = 1, or not same, [; = —1, labels. It minimizes the
following cost function over the transformation matrix 7

CSML(T, {(v;,v))},{l:i}) = (2)
Z{illi:1} CS(T, Vi, ’U{) e Z{illi:71} CS(T, Vi, U;) - BZHT - I|| )

with I the identity matrix, and the transformed cosine similarity is defined as:
CS(T,v,v") = % . The regularization parameter (3; is set to one, and
the parameter (B is optimized using the coarse to fine scheme suggested in [28].

Similarly to [28,29], we first employ PCA (trained on a subset of the training
data, and for each channel separately) to reduce the dimension of the input data
from 5,000 to 50. Let the PCA matrices be denoted as R,. CSML is trained
on the training data using pairs of vectors (Ryuq, Rot,,) and the corresponding
labels. The resulting transformation of size 30 x 50 is then applied, and each
video is represented by 8 x 30 = 240 features vectors v obtained by concatenating
Ty Roug over all channels. A binary, linear SVM is then learned on the training
data to map the 240 features of each pair of video clips to a binary decision of
same/not-same. This is done by transforming each training pair representations
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v and v’ to a single vector by performing point-wise multiplications of the two
vectors (v. x v/, where .x denotes point-wise multiplication). Given a test pair,
PCA and then the CSML transformations are applied to each video clip, followed
by the application of the obtained SVM to the point-wise product of the resulting
pair of feature vectors.

8 Experiments

We demonstrate the effectiveness of our method on a variety of Action Recog-
nition benchmarks, focusing on recently published benchmarks of challenging,
“in-the-wild” videos. As mentioned earlier, the various parameters are fixed and
no real effort was made to optimize them; however, to demonstrate the contribu-
tion of the various parts of our method we also compare with partial variants of it.

ASLAN. The Action Similarity Labeling (ASLAN) collection [12] is a recent
Action Recognition benchmark, which is modeled similarly to the Labeled Faces
in the Wild face identification dataset [27]. It includes thousands of video clips
collected from YouTube, depicting over 400 complex action classes. A “same/not-
same” challenge is provided, which transforms the Action Recognition problem
from a multi-class labeling task to a binary decision one. The goal is to answer
the question of whether a pair of video clips presents the same action or not.

Results are reported as the average performance of ten separate experiments
in a leave-one-split-out cross validation fashion. Each of the ten splits contains
300 pairs of same action videos and 300 not-same pairs. In each experiment, nine
of the splits are used for training, and the tenth for testing. The ASLAN splits
are mutually exclusive in the action labels they contain; if videos of a certain
action appear in one split, no videos of that same action will appear in any other
split. Note that we make sure to train all aspects of our system on the training
data only, and so the dictionary is built (k-means) ten times, and similarly new
PCA matrices and CSML transformations are learned per test split.

We compare multiple algorithms, including LTP [22] which is the most rel-
evant to our own, and the STIP descriptors — HOG, HOF, and HNF [30], each
one separately, and combined.

For the proposed MIP method, we show several variants in which some of the
method’s components were muted. First there are the single channel variants,
in which the entire pipeline was applied to only one channel out of the eight.
We display results for the « = 0 channel, which is the one closest to LTP, to
allow a direct comparison, as well as to the a = 1 channel which is the best
performing out of the eight. In addition, we also compare to variants in which
the suppression mechanism of Section 5 is removed, a variant in which the global
motion compensation mechanism of Section 6 is removed, and a variant in which
both are removed.

Lastly, to demonstrate the need for a specially suited motion compensation
mechanism we compute MIP, without the motion compensation component, on
stabilized videos. The stabilized videos were produced using SSD based interest-
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Table 1. Comparison to previous results on the ASLAN benchmark. The average
accuracy and standard error on the ASLAN benchmark is given for a list of methods
(see text for details). All HOG, HOF, and HNF results are taken from [12,29].

No CSML With CSML
System Accuracy AUC |Accuracy AUC
LTP [22] 55.45 + 0.6 % |57.2 |58.50 + 0.7 % |62.4
HOG [30] 58.55 + 0.8 % [61.59/60.15 + 0.6 % |64.2
HOF [30] 56.82 + 0.6 % |58.56|58.62 + 1.0 % |61.8
HNF [30] 58.67 + 0.9 % (62.16/57.20 + 0.8 % |60.5
MIP single channel o = 0 58.27 £ 0.6 % [61.7 [61.52 + 0.8 % [66.5
MIP single best channel o = 1 61.45 + 0.8 % |66.1 |63.55 + 0.8 % [69.0
MIP w/o suppression 61.67 + 0.9 % [66.4 |63.17 + 1.1 % [68.4
MIP w/o motion compensation 62.27 + 0.8 % |66.4 |63.57 £ 1.0 % [69.5
MIP w/o both 60.43 + 1.0 % |64.8 |63.08 +£ 0.9 % [68.2
MIP on stabilized clips 59.73 + 0.77 %|62.9 62.30 + 0.77% |66.4
MIP 62.23 + 0.8 % |67.5 |64.62 + 0.8 % |70.4
HOG+HOF+HNF 60.88 + 0.8 % |65.3 |63.12 £ 0.9 % [68.0
HOG+HOF+HNF with OSSML [29](62.52 4+ 0.8 % [66.6 |64.25 + 0.7 % |69.1
MIP+HOG+HOF-+HNF 64.27 + 1.0 % |69.2 [65.45 + 0.8 %|71.92

point matching combined with RANSAC, as provided by Matlab’s video stabi-
lization routine.

Table 1 lists the resulting performance measures. Both aggregated Area Un-
der the ROC Curve (AUC) and the average accuracy =+ standard errors for the
ten splits are reported. As can be seen the proposed MIP method considerably
outperforms all single feature methods, and even outperforms the application
of the elaborate OSSML algorithm [29] to the three methods HOG, HOF, and
HNF combined. Furthermore, MIP seems to be complimentary to HOG, HOF,
and HNF, and combining MIP with these descriptors improves performance even
further. The contribution of each component of the method, including the mul-
tiplicity of channels, the suppression mechanism, and the motion compensation
mechanisms is also clear from the results. Specifically, for the motion compen-
sation mechanism, it can be seen that standard alignment techniques perform
poorly in improving recognition rates when applied to unconstrained videos; pre-
sumably due to misleading cues from multiple scene motions, low video quality
ete.

HMDB51. The recent HMDB51 dataset [31] contains 51 distinct action cate-
gories, each represented by at least 101 video clips. The total 6,766 video clips
were extracted from a wide range of varied sources. It is said to be one of the
most challenging datasets of its kind, with performance levels in the low twenties.

The benchmark results on this dataset are evaluated using three distinct
training and testing splits, each containing 70 training and 30 testing clips per
action category. The splits are provided by the authors of [31] and were selected
to display a representative mix of video quality and camera motion attributes.
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The dataset comes in two flavors: original and stabilized. Since our method
contains its own motion compensation mechanism we test our method on the
more challenging, original video collection.

The results are depicted in Table 2. Baseline results, taken from [31], in-
clude the combination of the HOG and HOF STIP systems [30], as well as the
biologically-motivated Action Recognition system [32] based on a model of the
human visual cortex. The last was recently shown to perform on-par with humans
in recognizing rodent behaviors [33]. We also compare to a recent contribution
by [6]. As seen in this table, our system outperforms all reported results on this
set.

Table 2. Comparison to previous results on the Table 3. Comparison to previous re-
HMDB51 database. Since our method contains sults on the UCF50 database. Our
a motion compensation component, we tested method significantly outperforms all
our method on the more challenging unstabilized reported methods.

videos. Our method significantly outperforms all

results obtained by previous work. System splits  |[LOgO
HOG/HOF [30][47.9% |N/A
System Original clips|Stabilized clips Action Bank [6]|57.9% |N/A
HOG/HOF [30]20.44% 21.96% MIP 68.51%|72.68%
€2 [32] 22.83% 23.18%
Action Bank [6][26.90% N/A
MIP 29.17%  |N/A

UCF50. Another recent real-world dataset is the UCF50 data set®, which in-
cludes videos of 50 actions collected from YouTube. It contains at least 100
videos per action category. With regards to action classes, there are 10 classes
which overlap the HMDB51 dataset; however, HMDB51 spans beyond YouTube,
including, e.g., motion pictures, and is therefore claimed to be more varied.

Following the recommendation of the UCF50 authors, we use a Leave-One-
group-Out (LOgO) cross validation scheme, since each class in this dataset is
divided into 25 homogeneous groups. In this setting, our system, without any
tuning or modification, achieves 72.68% accuracy (chance level 2%). To be able
to compare our results to the only two previously reported results on these set,
we have conducted also a 10-fold cross validation test, where each time 9 random
groups out of the 25 were used as test and the remaining 16 as training data,
in this setting we achieved accuracy of 68.51%, which significantly outperform
other methods on this set. See Table 3 for comparison.

KTH. The KTH dataset is an older dataset, on which many results have been
reported, many of which using different testing protocols. It contains sequences
from six classes: walking, jogging, running, boxing, clapping, and hand-waving.

3 Available from http://vision.eecs.ucf.edu/data/UCF50.rar
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The camera in this dataset is static, and several previous contributions have
used an attention mechanism in order to focus on the moving parts. We employ
no such mechanism.

To report results we follow the protocol of [34], where the sequences of eight
subjects are used for training, eight other subjects reserved for validation are
not used in our system, and the actions of nine subjects are used for testing. On
this older, artificial, and perhaps more limited benchmark our system achieves
93% accuracy which is on par with results reported by leading contributions that
apply similar setting (for example, [9,14,22]).

9 Conclusion

Action Recognition in unconstrained videos remains a challenging problem in
spite of much research. Here, based on the observation that local patterns of
patch similarities can encode motion direction and motion change, we propose a
novel Action Recognition pipeline, which also includes components that enable
the decoupling of shape from motion, and compensate for camera motion in a
manner tailored for the encoding scheme. Tested on the most realistic and chal-
lenging Action Recognition benchmarks, our method outperforms all reported
methods. The modular structure of our system enables further improvements,
such as the addition of learning-based hierarchical encoding layers, using recently
proposed methods [9, 35].
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